Factor
2\left(x-3\right)\left(5x-3\right)
Evaluate
2\left(x-3\right)\left(5x-3\right)
Graph
Share
Copied to clipboard
2\left(5x^{2}-18x+9\right)
Factor out 2.
a+b=-18 ab=5\times 9=45
Consider 5x^{2}-18x+9. Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
a=-15 b=-3
The solution is the pair that gives sum -18.
\left(5x^{2}-15x\right)+\left(-3x+9\right)
Rewrite 5x^{2}-18x+9 as \left(5x^{2}-15x\right)+\left(-3x+9\right).
5x\left(x-3\right)-3\left(x-3\right)
Factor out 5x in the first and -3 in the second group.
\left(x-3\right)\left(5x-3\right)
Factor out common term x-3 by using distributive property.
2\left(x-3\right)\left(5x-3\right)
Rewrite the complete factored expression.
10x^{2}-36x+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 10\times 18}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 10\times 18}}{2\times 10}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-40\times 18}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-36\right)±\sqrt{1296-720}}{2\times 10}
Multiply -40 times 18.
x=\frac{-\left(-36\right)±\sqrt{576}}{2\times 10}
Add 1296 to -720.
x=\frac{-\left(-36\right)±24}{2\times 10}
Take the square root of 576.
x=\frac{36±24}{2\times 10}
The opposite of -36 is 36.
x=\frac{36±24}{20}
Multiply 2 times 10.
x=\frac{60}{20}
Now solve the equation x=\frac{36±24}{20} when ± is plus. Add 36 to 24.
x=3
Divide 60 by 20.
x=\frac{12}{20}
Now solve the equation x=\frac{36±24}{20} when ± is minus. Subtract 24 from 36.
x=\frac{3}{5}
Reduce the fraction \frac{12}{20} to lowest terms by extracting and canceling out 4.
10x^{2}-36x+18=10\left(x-3\right)\left(x-\frac{3}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and \frac{3}{5} for x_{2}.
10x^{2}-36x+18=10\left(x-3\right)\times \frac{5x-3}{5}
Subtract \frac{3}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-36x+18=2\left(x-3\right)\left(5x-3\right)
Cancel out 5, the greatest common factor in 10 and 5.
x ^ 2 -\frac{18}{5}x +\frac{9}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 10
r + s = \frac{18}{5} rs = \frac{9}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{5} - u s = \frac{9}{5} + u
Two numbers r and s sum up to \frac{18}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{18}{5} = \frac{9}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{5} - u) (\frac{9}{5} + u) = \frac{9}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{9}{5}
\frac{81}{25} - u^2 = \frac{9}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{9}{5}-\frac{81}{25} = -\frac{36}{25}
Simplify the expression by subtracting \frac{81}{25} on both sides
u^2 = \frac{36}{25} u = \pm\sqrt{\frac{36}{25}} = \pm \frac{6}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{5} - \frac{6}{5} = 0.600 s = \frac{9}{5} + \frac{6}{5} = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}