Solve for x
x=-\frac{1}{4}=-0.25
x=\frac{2}{5}=0.4
Graph
Share
Copied to clipboard
10x^{2}-1-\frac{3}{2}x=0
Subtract \frac{3}{2}x from both sides.
10x^{2}-\frac{3}{2}x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times 10\left(-1\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -\frac{3}{2} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times 10\left(-1\right)}}{2\times 10}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-40\left(-1\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}+40}}{2\times 10}
Multiply -40 times -1.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{169}{4}}}{2\times 10}
Add \frac{9}{4} to 40.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{13}{2}}{2\times 10}
Take the square root of \frac{169}{4}.
x=\frac{\frac{3}{2}±\frac{13}{2}}{2\times 10}
The opposite of -\frac{3}{2} is \frac{3}{2}.
x=\frac{\frac{3}{2}±\frac{13}{2}}{20}
Multiply 2 times 10.
x=\frac{8}{20}
Now solve the equation x=\frac{\frac{3}{2}±\frac{13}{2}}{20} when ± is plus. Add \frac{3}{2} to \frac{13}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{2}{5}
Reduce the fraction \frac{8}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{5}{20}
Now solve the equation x=\frac{\frac{3}{2}±\frac{13}{2}}{20} when ± is minus. Subtract \frac{13}{2} from \frac{3}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{4}
Reduce the fraction \frac{-5}{20} to lowest terms by extracting and canceling out 5.
x=\frac{2}{5} x=-\frac{1}{4}
The equation is now solved.
10x^{2}-1-\frac{3}{2}x=0
Subtract \frac{3}{2}x from both sides.
10x^{2}-\frac{3}{2}x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{10x^{2}-\frac{3}{2}x}{10}=\frac{1}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{\frac{3}{2}}{10}\right)x=\frac{1}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{3}{20}x=\frac{1}{10}
Divide -\frac{3}{2} by 10.
x^{2}-\frac{3}{20}x+\left(-\frac{3}{40}\right)^{2}=\frac{1}{10}+\left(-\frac{3}{40}\right)^{2}
Divide -\frac{3}{20}, the coefficient of the x term, by 2 to get -\frac{3}{40}. Then add the square of -\frac{3}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{20}x+\frac{9}{1600}=\frac{1}{10}+\frac{9}{1600}
Square -\frac{3}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{20}x+\frac{9}{1600}=\frac{169}{1600}
Add \frac{1}{10} to \frac{9}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{40}\right)^{2}=\frac{169}{1600}
Factor x^{2}-\frac{3}{20}x+\frac{9}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{40}\right)^{2}}=\sqrt{\frac{169}{1600}}
Take the square root of both sides of the equation.
x-\frac{3}{40}=\frac{13}{40} x-\frac{3}{40}=-\frac{13}{40}
Simplify.
x=\frac{2}{5} x=-\frac{1}{4}
Add \frac{3}{40} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}