Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+x^{4}-8=0
Subtract 8 from both sides.
t^{2}+10t-8=0
Substitute t for x^{2}.
t=\frac{-10±\sqrt{10^{2}-4\times 1\left(-8\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and -8 for c in the quadratic formula.
t=\frac{-10±2\sqrt{33}}{2}
Do the calculations.
t=\sqrt{33}-5 t=-\sqrt{33}-5
Solve the equation t=\frac{-10±2\sqrt{33}}{2} when ± is plus and when ± is minus.
x=-\sqrt{\sqrt{33}-5} x=\sqrt{\sqrt{33}-5} x=-i\sqrt{\sqrt{33}+5} x=i\sqrt{\sqrt{33}+5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
10x^{2}+x^{4}-8=0
Subtract 8 from both sides.
t^{2}+10t-8=0
Substitute t for x^{2}.
t=\frac{-10±\sqrt{10^{2}-4\times 1\left(-8\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and -8 for c in the quadratic formula.
t=\frac{-10±2\sqrt{33}}{2}
Do the calculations.
t=\sqrt{33}-5 t=-\sqrt{33}-5
Solve the equation t=\frac{-10±2\sqrt{33}}{2} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{33}-5} x=-\sqrt{\sqrt{33}-5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.