Solve for x (complex solution)
x=i\sqrt{\sqrt{33}+5}\approx 3.277889969i
x=-i\sqrt{\sqrt{33}+5}\approx -0-3.277889969i
x=-\sqrt{\sqrt{33}-5}\approx -0.862880436
x=\sqrt{\sqrt{33}-5}\approx 0.862880436
Solve for x
x=-\sqrt{\sqrt{33}-5}\approx -0.862880436
x=\sqrt{\sqrt{33}-5}\approx 0.862880436
Graph
Share
Copied to clipboard
10x^{2}+x^{4}-8=0
Subtract 8 from both sides.
t^{2}+10t-8=0
Substitute t for x^{2}.
t=\frac{-10±\sqrt{10^{2}-4\times 1\left(-8\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and -8 for c in the quadratic formula.
t=\frac{-10±2\sqrt{33}}{2}
Do the calculations.
t=\sqrt{33}-5 t=-\sqrt{33}-5
Solve the equation t=\frac{-10±2\sqrt{33}}{2} when ± is plus and when ± is minus.
x=-\sqrt{\sqrt{33}-5} x=\sqrt{\sqrt{33}-5} x=-i\sqrt{\sqrt{33}+5} x=i\sqrt{\sqrt{33}+5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
10x^{2}+x^{4}-8=0
Subtract 8 from both sides.
t^{2}+10t-8=0
Substitute t for x^{2}.
t=\frac{-10±\sqrt{10^{2}-4\times 1\left(-8\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and -8 for c in the quadratic formula.
t=\frac{-10±2\sqrt{33}}{2}
Do the calculations.
t=\sqrt{33}-5 t=-\sqrt{33}-5
Solve the equation t=\frac{-10±2\sqrt{33}}{2} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{33}-5} x=-\sqrt{\sqrt{33}-5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}