Solve for x
x=\frac{-3\sqrt{13}-9}{2}\approx -9.908326913
x=-1
x=\frac{3\sqrt{13}-9}{2}\approx 0.908326913
Graph
Share
Copied to clipboard
10x^{2}+x^{3}-6-3=0
Subtract 3 from both sides.
10x^{2}+x^{3}-9=0
Subtract 3 from -6 to get -9.
x^{3}+10x^{2}-9=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±9,±3,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -9 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+9x-9=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+10x^{2}-9 by x+1 to get x^{2}+9x-9. Solve the equation where the result equals to 0.
x=\frac{-9±\sqrt{9^{2}-4\times 1\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 9 for b, and -9 for c in the quadratic formula.
x=\frac{-9±3\sqrt{13}}{2}
Do the calculations.
x=\frac{-3\sqrt{13}-9}{2} x=\frac{3\sqrt{13}-9}{2}
Solve the equation x^{2}+9x-9=0 when ± is plus and when ± is minus.
x=-1 x=\frac{-3\sqrt{13}-9}{2} x=\frac{3\sqrt{13}-9}{2}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}