Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+4-6x-15x
Combine 10x^{2} and -8x^{2} to get 2x^{2}.
2x^{2}+4-21x
Combine -6x and -15x to get -21x.
factor(2x^{2}+4-6x-15x)
Combine 10x^{2} and -8x^{2} to get 2x^{2}.
factor(2x^{2}+4-21x)
Combine -6x and -15x to get -21x.
2x^{2}-21x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 2\times 4}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 2\times 4}}{2\times 2}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-8\times 4}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-21\right)±\sqrt{441-32}}{2\times 2}
Multiply -8 times 4.
x=\frac{-\left(-21\right)±\sqrt{409}}{2\times 2}
Add 441 to -32.
x=\frac{21±\sqrt{409}}{2\times 2}
The opposite of -21 is 21.
x=\frac{21±\sqrt{409}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{409}+21}{4}
Now solve the equation x=\frac{21±\sqrt{409}}{4} when ± is plus. Add 21 to \sqrt{409}.
x=\frac{21-\sqrt{409}}{4}
Now solve the equation x=\frac{21±\sqrt{409}}{4} when ± is minus. Subtract \sqrt{409} from 21.
2x^{2}-21x+4=2\left(x-\frac{\sqrt{409}+21}{4}\right)\left(x-\frac{21-\sqrt{409}}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{21+\sqrt{409}}{4} for x_{1} and \frac{21-\sqrt{409}}{4} for x_{2}.