Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+2x-25=100
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
10x^{2}+2x-25-100=100-100
Subtract 100 from both sides of the equation.
10x^{2}+2x-25-100=0
Subtracting 100 from itself leaves 0.
10x^{2}+2x-125=0
Subtract 100 from -25.
x=\frac{-2±\sqrt{2^{2}-4\times 10\left(-125\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 2 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 10\left(-125\right)}}{2\times 10}
Square 2.
x=\frac{-2±\sqrt{4-40\left(-125\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-2±\sqrt{4+5000}}{2\times 10}
Multiply -40 times -125.
x=\frac{-2±\sqrt{5004}}{2\times 10}
Add 4 to 5000.
x=\frac{-2±6\sqrt{139}}{2\times 10}
Take the square root of 5004.
x=\frac{-2±6\sqrt{139}}{20}
Multiply 2 times 10.
x=\frac{6\sqrt{139}-2}{20}
Now solve the equation x=\frac{-2±6\sqrt{139}}{20} when ± is plus. Add -2 to 6\sqrt{139}.
x=\frac{3\sqrt{139}-1}{10}
Divide -2+6\sqrt{139} by 20.
x=\frac{-6\sqrt{139}-2}{20}
Now solve the equation x=\frac{-2±6\sqrt{139}}{20} when ± is minus. Subtract 6\sqrt{139} from -2.
x=\frac{-3\sqrt{139}-1}{10}
Divide -2-6\sqrt{139} by 20.
x=\frac{3\sqrt{139}-1}{10} x=\frac{-3\sqrt{139}-1}{10}
The equation is now solved.
10x^{2}+2x-25=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10x^{2}+2x-25-\left(-25\right)=100-\left(-25\right)
Add 25 to both sides of the equation.
10x^{2}+2x=100-\left(-25\right)
Subtracting -25 from itself leaves 0.
10x^{2}+2x=125
Subtract -25 from 100.
\frac{10x^{2}+2x}{10}=\frac{125}{10}
Divide both sides by 10.
x^{2}+\frac{2}{10}x=\frac{125}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+\frac{1}{5}x=\frac{125}{10}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{5}x=\frac{25}{2}
Reduce the fraction \frac{125}{10} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\frac{25}{2}+\left(\frac{1}{10}\right)^{2}
Divide \frac{1}{5}, the coefficient of the x term, by 2 to get \frac{1}{10}. Then add the square of \frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{25}{2}+\frac{1}{100}
Square \frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{1251}{100}
Add \frac{25}{2} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{10}\right)^{2}=\frac{1251}{100}
Factor x^{2}+\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{1251}{100}}
Take the square root of both sides of the equation.
x+\frac{1}{10}=\frac{3\sqrt{139}}{10} x+\frac{1}{10}=-\frac{3\sqrt{139}}{10}
Simplify.
x=\frac{3\sqrt{139}-1}{10} x=\frac{-3\sqrt{139}-1}{10}
Subtract \frac{1}{10} from both sides of the equation.