Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+160=16x^{2}+64x+64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-8\right)^{2}.
10x^{2}+160-16x^{2}=64x+64
Subtract 16x^{2} from both sides.
-6x^{2}+160=64x+64
Combine 10x^{2} and -16x^{2} to get -6x^{2}.
-6x^{2}+160-64x=64
Subtract 64x from both sides.
-6x^{2}+160-64x-64=0
Subtract 64 from both sides.
-6x^{2}+96-64x=0
Subtract 64 from 160 to get 96.
-3x^{2}+48-32x=0
Divide both sides by 2.
-3x^{2}-32x+48=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-32 ab=-3\times 48=-144
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+48. To find a and b, set up a system to be solved.
1,-144 2,-72 3,-48 4,-36 6,-24 8,-18 9,-16 12,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -144.
1-144=-143 2-72=-70 3-48=-45 4-36=-32 6-24=-18 8-18=-10 9-16=-7 12-12=0
Calculate the sum for each pair.
a=4 b=-36
The solution is the pair that gives sum -32.
\left(-3x^{2}+4x\right)+\left(-36x+48\right)
Rewrite -3x^{2}-32x+48 as \left(-3x^{2}+4x\right)+\left(-36x+48\right).
-x\left(3x-4\right)-12\left(3x-4\right)
Factor out -x in the first and -12 in the second group.
\left(3x-4\right)\left(-x-12\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=-12
To find equation solutions, solve 3x-4=0 and -x-12=0.
10x^{2}+160=16x^{2}+64x+64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-8\right)^{2}.
10x^{2}+160-16x^{2}=64x+64
Subtract 16x^{2} from both sides.
-6x^{2}+160=64x+64
Combine 10x^{2} and -16x^{2} to get -6x^{2}.
-6x^{2}+160-64x=64
Subtract 64x from both sides.
-6x^{2}+160-64x-64=0
Subtract 64 from both sides.
-6x^{2}+96-64x=0
Subtract 64 from 160 to get 96.
-6x^{2}-64x+96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\left(-6\right)\times 96}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -64 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\left(-6\right)\times 96}}{2\left(-6\right)}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096+24\times 96}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-64\right)±\sqrt{4096+2304}}{2\left(-6\right)}
Multiply 24 times 96.
x=\frac{-\left(-64\right)±\sqrt{6400}}{2\left(-6\right)}
Add 4096 to 2304.
x=\frac{-\left(-64\right)±80}{2\left(-6\right)}
Take the square root of 6400.
x=\frac{64±80}{2\left(-6\right)}
The opposite of -64 is 64.
x=\frac{64±80}{-12}
Multiply 2 times -6.
x=\frac{144}{-12}
Now solve the equation x=\frac{64±80}{-12} when ± is plus. Add 64 to 80.
x=-12
Divide 144 by -12.
x=-\frac{16}{-12}
Now solve the equation x=\frac{64±80}{-12} when ± is minus. Subtract 80 from 64.
x=\frac{4}{3}
Reduce the fraction \frac{-16}{-12} to lowest terms by extracting and canceling out 4.
x=-12 x=\frac{4}{3}
The equation is now solved.
10x^{2}+160=16x^{2}+64x+64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-8\right)^{2}.
10x^{2}+160-16x^{2}=64x+64
Subtract 16x^{2} from both sides.
-6x^{2}+160=64x+64
Combine 10x^{2} and -16x^{2} to get -6x^{2}.
-6x^{2}+160-64x=64
Subtract 64x from both sides.
-6x^{2}-64x=64-160
Subtract 160 from both sides.
-6x^{2}-64x=-96
Subtract 160 from 64 to get -96.
\frac{-6x^{2}-64x}{-6}=-\frac{96}{-6}
Divide both sides by -6.
x^{2}+\left(-\frac{64}{-6}\right)x=-\frac{96}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}+\frac{32}{3}x=-\frac{96}{-6}
Reduce the fraction \frac{-64}{-6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{32}{3}x=16
Divide -96 by -6.
x^{2}+\frac{32}{3}x+\left(\frac{16}{3}\right)^{2}=16+\left(\frac{16}{3}\right)^{2}
Divide \frac{32}{3}, the coefficient of the x term, by 2 to get \frac{16}{3}. Then add the square of \frac{16}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{32}{3}x+\frac{256}{9}=16+\frac{256}{9}
Square \frac{16}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{32}{3}x+\frac{256}{9}=\frac{400}{9}
Add 16 to \frac{256}{9}.
\left(x+\frac{16}{3}\right)^{2}=\frac{400}{9}
Factor x^{2}+\frac{32}{3}x+\frac{256}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{16}{3}\right)^{2}}=\sqrt{\frac{400}{9}}
Take the square root of both sides of the equation.
x+\frac{16}{3}=\frac{20}{3} x+\frac{16}{3}=-\frac{20}{3}
Simplify.
x=\frac{4}{3} x=-12
Subtract \frac{16}{3} from both sides of the equation.