Solve for x
x=-\frac{y}{5}+\frac{1}{10}
Solve for y
y=\frac{1}{2}-5x
Graph
Share
Copied to clipboard
10x-1=-2y
Subtract 2y from both sides. Anything subtracted from zero gives its negation.
10x=-2y+1
Add 1 to both sides.
10x=1-2y
The equation is in standard form.
\frac{10x}{10}=\frac{1-2y}{10}
Divide both sides by 10.
x=\frac{1-2y}{10}
Dividing by 10 undoes the multiplication by 10.
x=-\frac{y}{5}+\frac{1}{10}
Divide -2y+1 by 10.
2y-1=-10x
Subtract 10x from both sides. Anything subtracted from zero gives its negation.
2y=-10x+1
Add 1 to both sides.
2y=1-10x
The equation is in standard form.
\frac{2y}{2}=\frac{1-10x}{2}
Divide both sides by 2.
y=\frac{1-10x}{2}
Dividing by 2 undoes the multiplication by 2.
y=\frac{1}{2}-5x
Divide -10x+1 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}