Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t\left(10-14t\right)=0
Factor out t.
t=0 t=\frac{5}{7}
To find equation solutions, solve t=0 and 10-14t=0.
-14t^{2}+10t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10±\sqrt{10^{2}}}{2\left(-14\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -14 for a, 10 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±10}{2\left(-14\right)}
Take the square root of 10^{2}.
t=\frac{-10±10}{-28}
Multiply 2 times -14.
t=\frac{0}{-28}
Now solve the equation t=\frac{-10±10}{-28} when ± is plus. Add -10 to 10.
t=0
Divide 0 by -28.
t=-\frac{20}{-28}
Now solve the equation t=\frac{-10±10}{-28} when ± is minus. Subtract 10 from -10.
t=\frac{5}{7}
Reduce the fraction \frac{-20}{-28} to lowest terms by extracting and canceling out 4.
t=0 t=\frac{5}{7}
The equation is now solved.
-14t^{2}+10t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-14t^{2}+10t}{-14}=\frac{0}{-14}
Divide both sides by -14.
t^{2}+\frac{10}{-14}t=\frac{0}{-14}
Dividing by -14 undoes the multiplication by -14.
t^{2}-\frac{5}{7}t=\frac{0}{-14}
Reduce the fraction \frac{10}{-14} to lowest terms by extracting and canceling out 2.
t^{2}-\frac{5}{7}t=0
Divide 0 by -14.
t^{2}-\frac{5}{7}t+\left(-\frac{5}{14}\right)^{2}=\left(-\frac{5}{14}\right)^{2}
Divide -\frac{5}{7}, the coefficient of the x term, by 2 to get -\frac{5}{14}. Then add the square of -\frac{5}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{5}{7}t+\frac{25}{196}=\frac{25}{196}
Square -\frac{5}{14} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{5}{14}\right)^{2}=\frac{25}{196}
Factor t^{2}-\frac{5}{7}t+\frac{25}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{14}\right)^{2}}=\sqrt{\frac{25}{196}}
Take the square root of both sides of the equation.
t-\frac{5}{14}=\frac{5}{14} t-\frac{5}{14}=-\frac{5}{14}
Simplify.
t=\frac{5}{7} t=0
Add \frac{5}{14} to both sides of the equation.