Solve for t
t=\frac{1}{5}=0.2
t=0
Share
Copied to clipboard
50t^{2}-10t=0
Use the distributive property to multiply 10t by 5t-1.
t\left(50t-10\right)=0
Factor out t.
t=0 t=\frac{1}{5}
To find equation solutions, solve t=0 and 50t-10=0.
50t^{2}-10t=0
Use the distributive property to multiply 10t by 5t-1.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, -10 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-10\right)±10}{2\times 50}
Take the square root of \left(-10\right)^{2}.
t=\frac{10±10}{2\times 50}
The opposite of -10 is 10.
t=\frac{10±10}{100}
Multiply 2 times 50.
t=\frac{20}{100}
Now solve the equation t=\frac{10±10}{100} when ± is plus. Add 10 to 10.
t=\frac{1}{5}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
t=\frac{0}{100}
Now solve the equation t=\frac{10±10}{100} when ± is minus. Subtract 10 from 10.
t=0
Divide 0 by 100.
t=\frac{1}{5} t=0
The equation is now solved.
50t^{2}-10t=0
Use the distributive property to multiply 10t by 5t-1.
\frac{50t^{2}-10t}{50}=\frac{0}{50}
Divide both sides by 50.
t^{2}+\left(-\frac{10}{50}\right)t=\frac{0}{50}
Dividing by 50 undoes the multiplication by 50.
t^{2}-\frac{1}{5}t=\frac{0}{50}
Reduce the fraction \frac{-10}{50} to lowest terms by extracting and canceling out 10.
t^{2}-\frac{1}{5}t=0
Divide 0 by 50.
t^{2}-\frac{1}{5}t+\left(-\frac{1}{10}\right)^{2}=\left(-\frac{1}{10}\right)^{2}
Divide -\frac{1}{5}, the coefficient of the x term, by 2 to get -\frac{1}{10}. Then add the square of -\frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{1}{5}t+\frac{1}{100}=\frac{1}{100}
Square -\frac{1}{10} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{1}{10}\right)^{2}=\frac{1}{100}
Factor t^{2}-\frac{1}{5}t+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{1}{10}\right)^{2}}=\sqrt{\frac{1}{100}}
Take the square root of both sides of the equation.
t-\frac{1}{10}=\frac{1}{10} t-\frac{1}{10}=-\frac{1}{10}
Simplify.
t=\frac{1}{5} t=0
Add \frac{1}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}