Factor
\left(2q+5\right)\left(5q+9\right)
Evaluate
\left(2q+5\right)\left(5q+9\right)
Share
Copied to clipboard
a+b=43 ab=10\times 45=450
Factor the expression by grouping. First, the expression needs to be rewritten as 10q^{2}+aq+bq+45. To find a and b, set up a system to be solved.
1,450 2,225 3,150 5,90 6,75 9,50 10,45 15,30 18,25
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 450.
1+450=451 2+225=227 3+150=153 5+90=95 6+75=81 9+50=59 10+45=55 15+30=45 18+25=43
Calculate the sum for each pair.
a=18 b=25
The solution is the pair that gives sum 43.
\left(10q^{2}+18q\right)+\left(25q+45\right)
Rewrite 10q^{2}+43q+45 as \left(10q^{2}+18q\right)+\left(25q+45\right).
2q\left(5q+9\right)+5\left(5q+9\right)
Factor out 2q in the first and 5 in the second group.
\left(5q+9\right)\left(2q+5\right)
Factor out common term 5q+9 by using distributive property.
10q^{2}+43q+45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
q=\frac{-43±\sqrt{43^{2}-4\times 10\times 45}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-43±\sqrt{1849-4\times 10\times 45}}{2\times 10}
Square 43.
q=\frac{-43±\sqrt{1849-40\times 45}}{2\times 10}
Multiply -4 times 10.
q=\frac{-43±\sqrt{1849-1800}}{2\times 10}
Multiply -40 times 45.
q=\frac{-43±\sqrt{49}}{2\times 10}
Add 1849 to -1800.
q=\frac{-43±7}{2\times 10}
Take the square root of 49.
q=\frac{-43±7}{20}
Multiply 2 times 10.
q=-\frac{36}{20}
Now solve the equation q=\frac{-43±7}{20} when ± is plus. Add -43 to 7.
q=-\frac{9}{5}
Reduce the fraction \frac{-36}{20} to lowest terms by extracting and canceling out 4.
q=-\frac{50}{20}
Now solve the equation q=\frac{-43±7}{20} when ± is minus. Subtract 7 from -43.
q=-\frac{5}{2}
Reduce the fraction \frac{-50}{20} to lowest terms by extracting and canceling out 10.
10q^{2}+43q+45=10\left(q-\left(-\frac{9}{5}\right)\right)\left(q-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{9}{5} for x_{1} and -\frac{5}{2} for x_{2}.
10q^{2}+43q+45=10\left(q+\frac{9}{5}\right)\left(q+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10q^{2}+43q+45=10\times \frac{5q+9}{5}\left(q+\frac{5}{2}\right)
Add \frac{9}{5} to q by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10q^{2}+43q+45=10\times \frac{5q+9}{5}\times \frac{2q+5}{2}
Add \frac{5}{2} to q by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10q^{2}+43q+45=10\times \frac{\left(5q+9\right)\left(2q+5\right)}{5\times 2}
Multiply \frac{5q+9}{5} times \frac{2q+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10q^{2}+43q+45=10\times \frac{\left(5q+9\right)\left(2q+5\right)}{10}
Multiply 5 times 2.
10q^{2}+43q+45=\left(5q+9\right)\left(2q+5\right)
Cancel out 10, the greatest common factor in 10 and 10.
x ^ 2 +\frac{43}{10}x +\frac{9}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 10
r + s = -\frac{43}{10} rs = \frac{9}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{43}{20} - u s = -\frac{43}{20} + u
Two numbers r and s sum up to -\frac{43}{10} exactly when the average of the two numbers is \frac{1}{2}*-\frac{43}{10} = -\frac{43}{20}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{43}{20} - u) (-\frac{43}{20} + u) = \frac{9}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{9}{2}
\frac{1849}{400} - u^2 = \frac{9}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{9}{2}-\frac{1849}{400} = -\frac{49}{400}
Simplify the expression by subtracting \frac{1849}{400} on both sides
u^2 = \frac{49}{400} u = \pm\sqrt{\frac{49}{400}} = \pm \frac{7}{20}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{43}{20} - \frac{7}{20} = -2.500 s = -\frac{43}{20} + \frac{7}{20} = -1.800
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}