Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(2n^{2}+5n\right)
Factor out 5.
n\left(2n+5\right)
Consider 2n^{2}+5n. Factor out n.
5n\left(2n+5\right)
Rewrite the complete factored expression.
10n^{2}+25n=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-25±\sqrt{25^{2}}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-25±25}{2\times 10}
Take the square root of 25^{2}.
n=\frac{-25±25}{20}
Multiply 2 times 10.
n=\frac{0}{20}
Now solve the equation n=\frac{-25±25}{20} when ± is plus. Add -25 to 25.
n=0
Divide 0 by 20.
n=-\frac{50}{20}
Now solve the equation n=\frac{-25±25}{20} when ± is minus. Subtract 25 from -25.
n=-\frac{5}{2}
Reduce the fraction \frac{-50}{20} to lowest terms by extracting and canceling out 10.
10n^{2}+25n=10n\left(n-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{5}{2} for x_{2}.
10n^{2}+25n=10n\left(n+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10n^{2}+25n=10n\times \frac{2n+5}{2}
Add \frac{5}{2} to n by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10n^{2}+25n=5n\left(2n+5\right)
Cancel out 2, the greatest common factor in 10 and 2.