Solve for j
j=\frac{105}{2x+55}
x\neq -\frac{55}{2}
Solve for x
x=-\frac{55}{2}+\frac{105}{2j}
j\neq 0
Graph
Share
Copied to clipboard
20jx+550j=1050
Use the distributive property to multiply 10j by 2x+55.
\left(20x+550\right)j=1050
Combine all terms containing j.
\frac{\left(20x+550\right)j}{20x+550}=\frac{1050}{20x+550}
Divide both sides by 20x+550.
j=\frac{1050}{20x+550}
Dividing by 20x+550 undoes the multiplication by 20x+550.
j=\frac{105}{2x+55}
Divide 1050 by 20x+550.
20xj+550j=1050
Use the distributive property to multiply 10j by 2x+55.
20xj=1050-550j
Subtract 550j from both sides.
20jx=1050-550j
The equation is in standard form.
\frac{20jx}{20j}=\frac{1050-550j}{20j}
Divide both sides by 20j.
x=\frac{1050-550j}{20j}
Dividing by 20j undoes the multiplication by 20j.
x=-\frac{55}{2}+\frac{105}{2j}
Divide 1050-550j by 20j.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}