Factor
2\left(-x-1\right)\left(7x-5\right)
Evaluate
10-4x-14x^{2}
Graph
Share
Copied to clipboard
2\left(5-2x-7x^{2}\right)
Factor out 2.
-7x^{2}-2x+5
Consider 5-2x-7x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-7\times 5=-35
Factor the expression by grouping. First, the expression needs to be rewritten as -7x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
1,-35 5,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -35.
1-35=-34 5-7=-2
Calculate the sum for each pair.
a=5 b=-7
The solution is the pair that gives sum -2.
\left(-7x^{2}+5x\right)+\left(-7x+5\right)
Rewrite -7x^{2}-2x+5 as \left(-7x^{2}+5x\right)+\left(-7x+5\right).
-x\left(7x-5\right)-\left(7x-5\right)
Factor out -x in the first and -1 in the second group.
\left(7x-5\right)\left(-x-1\right)
Factor out common term 7x-5 by using distributive property.
2\left(7x-5\right)\left(-x-1\right)
Rewrite the complete factored expression.
-14x^{2}-4x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-14\right)\times 10}}{2\left(-14\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-14\right)\times 10}}{2\left(-14\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+56\times 10}}{2\left(-14\right)}
Multiply -4 times -14.
x=\frac{-\left(-4\right)±\sqrt{16+560}}{2\left(-14\right)}
Multiply 56 times 10.
x=\frac{-\left(-4\right)±\sqrt{576}}{2\left(-14\right)}
Add 16 to 560.
x=\frac{-\left(-4\right)±24}{2\left(-14\right)}
Take the square root of 576.
x=\frac{4±24}{2\left(-14\right)}
The opposite of -4 is 4.
x=\frac{4±24}{-28}
Multiply 2 times -14.
x=\frac{28}{-28}
Now solve the equation x=\frac{4±24}{-28} when ± is plus. Add 4 to 24.
x=-1
Divide 28 by -28.
x=-\frac{20}{-28}
Now solve the equation x=\frac{4±24}{-28} when ± is minus. Subtract 24 from 4.
x=\frac{5}{7}
Reduce the fraction \frac{-20}{-28} to lowest terms by extracting and canceling out 4.
-14x^{2}-4x+10=-14\left(x-\left(-1\right)\right)\left(x-\frac{5}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and \frac{5}{7} for x_{2}.
-14x^{2}-4x+10=-14\left(x+1\right)\left(x-\frac{5}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-14x^{2}-4x+10=-14\left(x+1\right)\times \frac{-7x+5}{-7}
Subtract \frac{5}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-14x^{2}-4x+10=2\left(x+1\right)\left(-7x+5\right)
Cancel out 7, the greatest common factor in -14 and 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}