Solve for v
v = \frac{43}{10} = 4\frac{3}{10} = 4.3
Solve for y
y = -\frac{43}{10} = -4\frac{3}{10} = -4.3
Graph
Share
Copied to clipboard
10y+40-4v=2\left(3v+3\right)-9
Use the distributive property to multiply 10 by y+4.
10y+40-4v=6v+6-9
Use the distributive property to multiply 2 by 3v+3.
10y+40-4v=6v-3
Subtract 9 from 6 to get -3.
10y+40-4v-6v=-3
Subtract 6v from both sides.
10y+40-10v=-3
Combine -4v and -6v to get -10v.
40-10v=-3-10y
Subtract 10y from both sides.
-10v=-3-10y-40
Subtract 40 from both sides.
-10v=-43-10y
Subtract 40 from -3 to get -43.
-10v=-10y-43
The equation is in standard form.
\frac{-10v}{-10}=\frac{-10y-43}{-10}
Divide both sides by -10.
v=\frac{-10y-43}{-10}
Dividing by -10 undoes the multiplication by -10.
v=y+\frac{43}{10}
Divide -43-10y by -10.
10y+40-4v=2\left(3v+3\right)-9
Use the distributive property to multiply 10 by y+4.
10y+40-4v=6v+6-9
Use the distributive property to multiply 2 by 3v+3.
10y+40-4v=6v-3
Subtract 9 from 6 to get -3.
10y-4v=6v-3-40
Subtract 40 from both sides.
10y-4v=6v-43
Subtract 40 from -3 to get -43.
10y=6v-43+4v
Add 4v to both sides.
10y=10v-43
Combine 6v and 4v to get 10v.
\frac{10y}{10}=\frac{10v-43}{10}
Divide both sides by 10.
y=\frac{10v-43}{10}
Dividing by 10 undoes the multiplication by 10.
y=v-\frac{43}{10}
Divide 10v-43 by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}