Solve for y
y = \frac{52}{7} = 7\frac{3}{7} = 7.428571428571429
Solve for x (complex solution)
x\in \mathrm{C}
y = \frac{52}{7} = 7\frac{3}{7} = 7.428571428571429
Solve for x
x\in \mathrm{R}
y = \frac{52}{7} = 7\frac{3}{7} = 7.428571428571429
Graph
Share
Copied to clipboard
10x+20+y+4=2\left(5\left(x-2\right)+4\left(y-1\right)\right)
Use the distributive property to multiply 10 by x+2.
10x+24+y=2\left(5\left(x-2\right)+4\left(y-1\right)\right)
Add 20 and 4 to get 24.
10x+24+y=2\left(5x-10+4\left(y-1\right)\right)
Use the distributive property to multiply 5 by x-2.
10x+24+y=2\left(5x-10+4y-4\right)
Use the distributive property to multiply 4 by y-1.
10x+24+y=2\left(5x-14+4y\right)
Subtract 4 from -10 to get -14.
10x+24+y=10x-28+8y
Use the distributive property to multiply 2 by 5x-14+4y.
10x+24+y-8y=10x-28
Subtract 8y from both sides.
10x+24-7y=10x-28
Combine y and -8y to get -7y.
24-7y=10x-28-10x
Subtract 10x from both sides.
24-7y=-28
Combine 10x and -10x to get 0.
-7y=-28-24
Subtract 24 from both sides.
-7y=-52
Subtract 24 from -28 to get -52.
y=\frac{-52}{-7}
Divide both sides by -7.
y=\frac{52}{7}
Fraction \frac{-52}{-7} can be simplified to \frac{52}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}