Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}-80x+151=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 10\times 151}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 10\times 151}}{2\times 10}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-40\times 151}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-80\right)±\sqrt{6400-6040}}{2\times 10}
Multiply -40 times 151.
x=\frac{-\left(-80\right)±\sqrt{360}}{2\times 10}
Add 6400 to -6040.
x=\frac{-\left(-80\right)±6\sqrt{10}}{2\times 10}
Take the square root of 360.
x=\frac{80±6\sqrt{10}}{2\times 10}
The opposite of -80 is 80.
x=\frac{80±6\sqrt{10}}{20}
Multiply 2 times 10.
x=\frac{6\sqrt{10}+80}{20}
Now solve the equation x=\frac{80±6\sqrt{10}}{20} when ± is plus. Add 80 to 6\sqrt{10}.
x=\frac{3\sqrt{10}}{10}+4
Divide 80+6\sqrt{10} by 20.
x=\frac{80-6\sqrt{10}}{20}
Now solve the equation x=\frac{80±6\sqrt{10}}{20} when ± is minus. Subtract 6\sqrt{10} from 80.
x=-\frac{3\sqrt{10}}{10}+4
Divide 80-6\sqrt{10} by 20.
10x^{2}-80x+151=10\left(x-\left(\frac{3\sqrt{10}}{10}+4\right)\right)\left(x-\left(-\frac{3\sqrt{10}}{10}+4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4+\frac{3\sqrt{10}}{10} for x_{1} and 4-\frac{3\sqrt{10}}{10} for x_{2}.