Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-7 ab=10\left(-12\right)=-120
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Calculate the sum for each pair.
a=-15 b=8
The solution is the pair that gives sum -7.
\left(10x^{2}-15x\right)+\left(8x-12\right)
Rewrite 10x^{2}-7x-12 as \left(10x^{2}-15x\right)+\left(8x-12\right).
5x\left(2x-3\right)+4\left(2x-3\right)
Factor out 5x in the first and 4 in the second group.
\left(2x-3\right)\left(5x+4\right)
Factor out common term 2x-3 by using distributive property.
10x^{2}-7x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 10\left(-12\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 10\left(-12\right)}}{2\times 10}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-40\left(-12\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-7\right)±\sqrt{49+480}}{2\times 10}
Multiply -40 times -12.
x=\frac{-\left(-7\right)±\sqrt{529}}{2\times 10}
Add 49 to 480.
x=\frac{-\left(-7\right)±23}{2\times 10}
Take the square root of 529.
x=\frac{7±23}{2\times 10}
The opposite of -7 is 7.
x=\frac{7±23}{20}
Multiply 2 times 10.
x=\frac{30}{20}
Now solve the equation x=\frac{7±23}{20} when ± is plus. Add 7 to 23.
x=\frac{3}{2}
Reduce the fraction \frac{30}{20} to lowest terms by extracting and canceling out 10.
x=-\frac{16}{20}
Now solve the equation x=\frac{7±23}{20} when ± is minus. Subtract 23 from 7.
x=-\frac{4}{5}
Reduce the fraction \frac{-16}{20} to lowest terms by extracting and canceling out 4.
10x^{2}-7x-12=10\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{4}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -\frac{4}{5} for x_{2}.
10x^{2}-7x-12=10\left(x-\frac{3}{2}\right)\left(x+\frac{4}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10x^{2}-7x-12=10\times \frac{2x-3}{2}\left(x+\frac{4}{5}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-7x-12=10\times \frac{2x-3}{2}\times \frac{5x+4}{5}
Add \frac{4}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-7x-12=10\times \frac{\left(2x-3\right)\left(5x+4\right)}{2\times 5}
Multiply \frac{2x-3}{2} times \frac{5x+4}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}-7x-12=10\times \frac{\left(2x-3\right)\left(5x+4\right)}{10}
Multiply 2 times 5.
10x^{2}-7x-12=\left(2x-3\right)\left(5x+4\right)
Cancel out 10, the greatest common factor in 10 and 10.