Solve for x (complex solution)
x=\frac{\sqrt{6}i}{10}+\frac{1}{5}\approx 0.2+0.244948974i
x=-\frac{\sqrt{6}i}{10}+\frac{1}{5}\approx 0.2-0.244948974i
Graph
Share
Copied to clipboard
10x^{2}-4x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 10}}{2\times 10}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-40}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-4\right)±\sqrt{-24}}{2\times 10}
Add 16 to -40.
x=\frac{-\left(-4\right)±2\sqrt{6}i}{2\times 10}
Take the square root of -24.
x=\frac{4±2\sqrt{6}i}{2\times 10}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{6}i}{20}
Multiply 2 times 10.
x=\frac{4+2\sqrt{6}i}{20}
Now solve the equation x=\frac{4±2\sqrt{6}i}{20} when ± is plus. Add 4 to 2i\sqrt{6}.
x=\frac{\sqrt{6}i}{10}+\frac{1}{5}
Divide 4+2i\sqrt{6} by 20.
x=\frac{-2\sqrt{6}i+4}{20}
Now solve the equation x=\frac{4±2\sqrt{6}i}{20} when ± is minus. Subtract 2i\sqrt{6} from 4.
x=-\frac{\sqrt{6}i}{10}+\frac{1}{5}
Divide 4-2i\sqrt{6} by 20.
x=\frac{\sqrt{6}i}{10}+\frac{1}{5} x=-\frac{\sqrt{6}i}{10}+\frac{1}{5}
The equation is now solved.
10x^{2}-4x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10x^{2}-4x+1-1=-1
Subtract 1 from both sides of the equation.
10x^{2}-4x=-1
Subtracting 1 from itself leaves 0.
\frac{10x^{2}-4x}{10}=-\frac{1}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{4}{10}\right)x=-\frac{1}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{2}{5}x=-\frac{1}{10}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{1}{10}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{1}{10}+\frac{1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{3}{50}
Add -\frac{1}{10} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=-\frac{3}{50}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{-\frac{3}{50}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{\sqrt{6}i}{10} x-\frac{1}{5}=-\frac{\sqrt{6}i}{10}
Simplify.
x=\frac{\sqrt{6}i}{10}+\frac{1}{5} x=-\frac{\sqrt{6}i}{10}+\frac{1}{5}
Add \frac{1}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}