Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-19 ab=10\left(-15\right)=-150
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,-150 2,-75 3,-50 5,-30 6,-25 10,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -150.
1-150=-149 2-75=-73 3-50=-47 5-30=-25 6-25=-19 10-15=-5
Calculate the sum for each pair.
a=-25 b=6
The solution is the pair that gives sum -19.
\left(10x^{2}-25x\right)+\left(6x-15\right)
Rewrite 10x^{2}-19x-15 as \left(10x^{2}-25x\right)+\left(6x-15\right).
5x\left(2x-5\right)+3\left(2x-5\right)
Factor out 5x in the first and 3 in the second group.
\left(2x-5\right)\left(5x+3\right)
Factor out common term 2x-5 by using distributive property.
10x^{2}-19x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 10\left(-15\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 10\left(-15\right)}}{2\times 10}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-40\left(-15\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-19\right)±\sqrt{361+600}}{2\times 10}
Multiply -40 times -15.
x=\frac{-\left(-19\right)±\sqrt{961}}{2\times 10}
Add 361 to 600.
x=\frac{-\left(-19\right)±31}{2\times 10}
Take the square root of 961.
x=\frac{19±31}{2\times 10}
The opposite of -19 is 19.
x=\frac{19±31}{20}
Multiply 2 times 10.
x=\frac{50}{20}
Now solve the equation x=\frac{19±31}{20} when ± is plus. Add 19 to 31.
x=\frac{5}{2}
Reduce the fraction \frac{50}{20} to lowest terms by extracting and canceling out 10.
x=-\frac{12}{20}
Now solve the equation x=\frac{19±31}{20} when ± is minus. Subtract 31 from 19.
x=-\frac{3}{5}
Reduce the fraction \frac{-12}{20} to lowest terms by extracting and canceling out 4.
10x^{2}-19x-15=10\left(x-\frac{5}{2}\right)\left(x-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and -\frac{3}{5} for x_{2}.
10x^{2}-19x-15=10\left(x-\frac{5}{2}\right)\left(x+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10x^{2}-19x-15=10\times \frac{2x-5}{2}\left(x+\frac{3}{5}\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-19x-15=10\times \frac{2x-5}{2}\times \frac{5x+3}{5}
Add \frac{3}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-19x-15=10\times \frac{\left(2x-5\right)\left(5x+3\right)}{2\times 5}
Multiply \frac{2x-5}{2} times \frac{5x+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}-19x-15=10\times \frac{\left(2x-5\right)\left(5x+3\right)}{10}
Multiply 2 times 5.
10x^{2}-19x-15=\left(2x-5\right)\left(5x+3\right)
Cancel out 10, the greatest common factor in 10 and 10.