Factor
\left(2x-3\right)\left(5x+2\right)
Evaluate
\left(2x-3\right)\left(5x+2\right)
Graph
Share
Copied to clipboard
a+b=-11 ab=10\left(-6\right)=-60
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=-15 b=4
The solution is the pair that gives sum -11.
\left(10x^{2}-15x\right)+\left(4x-6\right)
Rewrite 10x^{2}-11x-6 as \left(10x^{2}-15x\right)+\left(4x-6\right).
5x\left(2x-3\right)+2\left(2x-3\right)
Factor out 5x in the first and 2 in the second group.
\left(2x-3\right)\left(5x+2\right)
Factor out common term 2x-3 by using distributive property.
10x^{2}-11x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 10\left(-6\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 10\left(-6\right)}}{2\times 10}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-40\left(-6\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-11\right)±\sqrt{121+240}}{2\times 10}
Multiply -40 times -6.
x=\frac{-\left(-11\right)±\sqrt{361}}{2\times 10}
Add 121 to 240.
x=\frac{-\left(-11\right)±19}{2\times 10}
Take the square root of 361.
x=\frac{11±19}{2\times 10}
The opposite of -11 is 11.
x=\frac{11±19}{20}
Multiply 2 times 10.
x=\frac{30}{20}
Now solve the equation x=\frac{11±19}{20} when ± is plus. Add 11 to 19.
x=\frac{3}{2}
Reduce the fraction \frac{30}{20} to lowest terms by extracting and canceling out 10.
x=-\frac{8}{20}
Now solve the equation x=\frac{11±19}{20} when ± is minus. Subtract 19 from 11.
x=-\frac{2}{5}
Reduce the fraction \frac{-8}{20} to lowest terms by extracting and canceling out 4.
10x^{2}-11x-6=10\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{2}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -\frac{2}{5} for x_{2}.
10x^{2}-11x-6=10\left(x-\frac{3}{2}\right)\left(x+\frac{2}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10x^{2}-11x-6=10\times \frac{2x-3}{2}\left(x+\frac{2}{5}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-11x-6=10\times \frac{2x-3}{2}\times \frac{5x+2}{5}
Add \frac{2}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-11x-6=10\times \frac{\left(2x-3\right)\left(5x+2\right)}{2\times 5}
Multiply \frac{2x-3}{2} times \frac{5x+2}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}-11x-6=10\times \frac{\left(2x-3\right)\left(5x+2\right)}{10}
Multiply 2 times 5.
10x^{2}-11x-6=\left(2x-3\right)\left(5x+2\right)
Cancel out 10, the greatest common factor in 10 and 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}