Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-107 ab=10\times 187=1870
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx+187. To find a and b, set up a system to be solved.
-1,-1870 -2,-935 -5,-374 -10,-187 -11,-170 -17,-110 -22,-85 -34,-55
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 1870.
-1-1870=-1871 -2-935=-937 -5-374=-379 -10-187=-197 -11-170=-181 -17-110=-127 -22-85=-107 -34-55=-89
Calculate the sum for each pair.
a=-85 b=-22
The solution is the pair that gives sum -107.
\left(10x^{2}-85x\right)+\left(-22x+187\right)
Rewrite 10x^{2}-107x+187 as \left(10x^{2}-85x\right)+\left(-22x+187\right).
5x\left(2x-17\right)-11\left(2x-17\right)
Factor out 5x in the first and -11 in the second group.
\left(2x-17\right)\left(5x-11\right)
Factor out common term 2x-17 by using distributive property.
10x^{2}-107x+187=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-107\right)±\sqrt{\left(-107\right)^{2}-4\times 10\times 187}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-107\right)±\sqrt{11449-4\times 10\times 187}}{2\times 10}
Square -107.
x=\frac{-\left(-107\right)±\sqrt{11449-40\times 187}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-107\right)±\sqrt{11449-7480}}{2\times 10}
Multiply -40 times 187.
x=\frac{-\left(-107\right)±\sqrt{3969}}{2\times 10}
Add 11449 to -7480.
x=\frac{-\left(-107\right)±63}{2\times 10}
Take the square root of 3969.
x=\frac{107±63}{2\times 10}
The opposite of -107 is 107.
x=\frac{107±63}{20}
Multiply 2 times 10.
x=\frac{170}{20}
Now solve the equation x=\frac{107±63}{20} when ± is plus. Add 107 to 63.
x=\frac{17}{2}
Reduce the fraction \frac{170}{20} to lowest terms by extracting and canceling out 10.
x=\frac{44}{20}
Now solve the equation x=\frac{107±63}{20} when ± is minus. Subtract 63 from 107.
x=\frac{11}{5}
Reduce the fraction \frac{44}{20} to lowest terms by extracting and canceling out 4.
10x^{2}-107x+187=10\left(x-\frac{17}{2}\right)\left(x-\frac{11}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{17}{2} for x_{1} and \frac{11}{5} for x_{2}.
10x^{2}-107x+187=10\times \frac{2x-17}{2}\left(x-\frac{11}{5}\right)
Subtract \frac{17}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-107x+187=10\times \frac{2x-17}{2}\times \frac{5x-11}{5}
Subtract \frac{11}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-107x+187=10\times \frac{\left(2x-17\right)\left(5x-11\right)}{2\times 5}
Multiply \frac{2x-17}{2} times \frac{5x-11}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}-107x+187=10\times \frac{\left(2x-17\right)\left(5x-11\right)}{10}
Multiply 2 times 5.
10x^{2}-107x+187=\left(2x-17\right)\left(5x-11\right)
Cancel out 10, the greatest common factor in 10 and 10.