Solve for x
x=-5
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
10x^{2}=2.5\left(x^{2}-10x+25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
10x^{2}=2.5x^{2}-25x+62.5
Use the distributive property to multiply 2.5 by x^{2}-10x+25.
10x^{2}-2.5x^{2}=-25x+62.5
Subtract 2.5x^{2} from both sides.
7.5x^{2}=-25x+62.5
Combine 10x^{2} and -2.5x^{2} to get 7.5x^{2}.
7.5x^{2}+25x=62.5
Add 25x to both sides.
7.5x^{2}+25x-62.5=0
Subtract 62.5 from both sides.
x=\frac{-25±\sqrt{25^{2}-4\times 7.5\left(-62.5\right)}}{2\times 7.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7.5 for a, 25 for b, and -62.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 7.5\left(-62.5\right)}}{2\times 7.5}
Square 25.
x=\frac{-25±\sqrt{625-30\left(-62.5\right)}}{2\times 7.5}
Multiply -4 times 7.5.
x=\frac{-25±\sqrt{625+1875}}{2\times 7.5}
Multiply -30 times -62.5.
x=\frac{-25±\sqrt{2500}}{2\times 7.5}
Add 625 to 1875.
x=\frac{-25±50}{2\times 7.5}
Take the square root of 2500.
x=\frac{-25±50}{15}
Multiply 2 times 7.5.
x=\frac{25}{15}
Now solve the equation x=\frac{-25±50}{15} when ± is plus. Add -25 to 50.
x=\frac{5}{3}
Reduce the fraction \frac{25}{15} to lowest terms by extracting and canceling out 5.
x=-\frac{75}{15}
Now solve the equation x=\frac{-25±50}{15} when ± is minus. Subtract 50 from -25.
x=-5
Divide -75 by 15.
x=\frac{5}{3} x=-5
The equation is now solved.
10x^{2}=2.5\left(x^{2}-10x+25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
10x^{2}=2.5x^{2}-25x+62.5
Use the distributive property to multiply 2.5 by x^{2}-10x+25.
10x^{2}-2.5x^{2}=-25x+62.5
Subtract 2.5x^{2} from both sides.
7.5x^{2}=-25x+62.5
Combine 10x^{2} and -2.5x^{2} to get 7.5x^{2}.
7.5x^{2}+25x=62.5
Add 25x to both sides.
\frac{7.5x^{2}+25x}{7.5}=\frac{62.5}{7.5}
Divide both sides of the equation by 7.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{25}{7.5}x=\frac{62.5}{7.5}
Dividing by 7.5 undoes the multiplication by 7.5.
x^{2}+\frac{10}{3}x=\frac{62.5}{7.5}
Divide 25 by 7.5 by multiplying 25 by the reciprocal of 7.5.
x^{2}+\frac{10}{3}x=\frac{25}{3}
Divide 62.5 by 7.5 by multiplying 62.5 by the reciprocal of 7.5.
x^{2}+\frac{10}{3}x+\frac{5}{3}^{2}=\frac{25}{3}+\frac{5}{3}^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{25}{3}+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{100}{9}
Add \frac{25}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{3}\right)^{2}=\frac{100}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{10}{3} x+\frac{5}{3}=-\frac{10}{3}
Simplify.
x=\frac{5}{3} x=-5
Subtract \frac{5}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}