Solve for a
a=\frac{3\sqrt{11}-7}{10}\approx 0.294987437
a=\frac{-3\sqrt{11}-7}{10}\approx -1.694987437
Share
Copied to clipboard
10a^{2}+14a-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-14±\sqrt{14^{2}-4\times 10\left(-5\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 14 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-14±\sqrt{196-4\times 10\left(-5\right)}}{2\times 10}
Square 14.
a=\frac{-14±\sqrt{196-40\left(-5\right)}}{2\times 10}
Multiply -4 times 10.
a=\frac{-14±\sqrt{196+200}}{2\times 10}
Multiply -40 times -5.
a=\frac{-14±\sqrt{396}}{2\times 10}
Add 196 to 200.
a=\frac{-14±6\sqrt{11}}{2\times 10}
Take the square root of 396.
a=\frac{-14±6\sqrt{11}}{20}
Multiply 2 times 10.
a=\frac{6\sqrt{11}-14}{20}
Now solve the equation a=\frac{-14±6\sqrt{11}}{20} when ± is plus. Add -14 to 6\sqrt{11}.
a=\frac{3\sqrt{11}-7}{10}
Divide -14+6\sqrt{11} by 20.
a=\frac{-6\sqrt{11}-14}{20}
Now solve the equation a=\frac{-14±6\sqrt{11}}{20} when ± is minus. Subtract 6\sqrt{11} from -14.
a=\frac{-3\sqrt{11}-7}{10}
Divide -14-6\sqrt{11} by 20.
a=\frac{3\sqrt{11}-7}{10} a=\frac{-3\sqrt{11}-7}{10}
The equation is now solved.
10a^{2}+14a-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10a^{2}+14a-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
10a^{2}+14a=-\left(-5\right)
Subtracting -5 from itself leaves 0.
10a^{2}+14a=5
Subtract -5 from 0.
\frac{10a^{2}+14a}{10}=\frac{5}{10}
Divide both sides by 10.
a^{2}+\frac{14}{10}a=\frac{5}{10}
Dividing by 10 undoes the multiplication by 10.
a^{2}+\frac{7}{5}a=\frac{5}{10}
Reduce the fraction \frac{14}{10} to lowest terms by extracting and canceling out 2.
a^{2}+\frac{7}{5}a=\frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
a^{2}+\frac{7}{5}a+\left(\frac{7}{10}\right)^{2}=\frac{1}{2}+\left(\frac{7}{10}\right)^{2}
Divide \frac{7}{5}, the coefficient of the x term, by 2 to get \frac{7}{10}. Then add the square of \frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{7}{5}a+\frac{49}{100}=\frac{1}{2}+\frac{49}{100}
Square \frac{7}{10} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{7}{5}a+\frac{49}{100}=\frac{99}{100}
Add \frac{1}{2} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{7}{10}\right)^{2}=\frac{99}{100}
Factor a^{2}+\frac{7}{5}a+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{7}{10}\right)^{2}}=\sqrt{\frac{99}{100}}
Take the square root of both sides of the equation.
a+\frac{7}{10}=\frac{3\sqrt{11}}{10} a+\frac{7}{10}=-\frac{3\sqrt{11}}{10}
Simplify.
a=\frac{3\sqrt{11}-7}{10} a=\frac{-3\sqrt{11}-7}{10}
Subtract \frac{7}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}