Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

60x=60x^{2}
Multiply 10 and 6 to get 60.
60x-60x^{2}=0
Subtract 60x^{2} from both sides.
x\left(60-60x\right)=0
Factor out x.
x=0 x=1
To find equation solutions, solve x=0 and 60-60x=0.
60x=60x^{2}
Multiply 10 and 6 to get 60.
60x-60x^{2}=0
Subtract 60x^{2} from both sides.
-60x^{2}+60x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}}}{2\left(-60\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -60 for a, 60 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±60}{2\left(-60\right)}
Take the square root of 60^{2}.
x=\frac{-60±60}{-120}
Multiply 2 times -60.
x=\frac{0}{-120}
Now solve the equation x=\frac{-60±60}{-120} when ± is plus. Add -60 to 60.
x=0
Divide 0 by -120.
x=-\frac{120}{-120}
Now solve the equation x=\frac{-60±60}{-120} when ± is minus. Subtract 60 from -60.
x=1
Divide -120 by -120.
x=0 x=1
The equation is now solved.
60x=60x^{2}
Multiply 10 and 6 to get 60.
60x-60x^{2}=0
Subtract 60x^{2} from both sides.
-60x^{2}+60x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-60x^{2}+60x}{-60}=\frac{0}{-60}
Divide both sides by -60.
x^{2}+\frac{60}{-60}x=\frac{0}{-60}
Dividing by -60 undoes the multiplication by -60.
x^{2}-x=\frac{0}{-60}
Divide 60 by -60.
x^{2}-x=0
Divide 0 by -60.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Simplify.
x=1 x=0
Add \frac{1}{2} to both sides of the equation.