Evaluate
\frac{100\sqrt{3}\left(\sqrt{221}+5\right)}{49}\approx 70.222531463
Factor
\frac{100 \sqrt{3} {(\sqrt{221} + 5)}}{49} = 70.2225314632895
Share
Copied to clipboard
\frac{10\left(10\sqrt{221}+50\right)}{49}\sqrt{3}
Express 10\times \frac{10\sqrt{221}+50}{49} as a single fraction.
\frac{100\sqrt{221}+500}{49}\sqrt{3}
Use the distributive property to multiply 10 by 10\sqrt{221}+50.
\frac{\left(100\sqrt{221}+500\right)\sqrt{3}}{49}
Express \frac{100\sqrt{221}+500}{49}\sqrt{3} as a single fraction.
\frac{100\sqrt{221}\sqrt{3}+500\sqrt{3}}{49}
Use the distributive property to multiply 100\sqrt{221}+500 by \sqrt{3}.
\frac{100\sqrt{663}+500\sqrt{3}}{49}
To multiply \sqrt{221} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}