Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

10\times \frac{\sqrt{27}}{\sqrt{4}}-5\sqrt{\frac{243}{16}}-2\sqrt{3}
Rewrite the square root of the division \sqrt{\frac{27}{4}} as the division of square roots \frac{\sqrt{27}}{\sqrt{4}}.
10\times \frac{3\sqrt{3}}{\sqrt{4}}-5\sqrt{\frac{243}{16}}-2\sqrt{3}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
10\times \frac{3\sqrt{3}}{2}-5\sqrt{\frac{243}{16}}-2\sqrt{3}
Calculate the square root of 4 and get 2.
5\times 3\sqrt{3}-5\sqrt{\frac{243}{16}}-2\sqrt{3}
Cancel out 2, the greatest common factor in 10 and 2.
5\times 3\sqrt{3}-5\times \frac{\sqrt{243}}{\sqrt{16}}-2\sqrt{3}
Rewrite the square root of the division \sqrt{\frac{243}{16}} as the division of square roots \frac{\sqrt{243}}{\sqrt{16}}.
5\times 3\sqrt{3}-5\times \frac{9\sqrt{3}}{\sqrt{16}}-2\sqrt{3}
Factor 243=9^{2}\times 3. Rewrite the square root of the product \sqrt{9^{2}\times 3} as the product of square roots \sqrt{9^{2}}\sqrt{3}. Take the square root of 9^{2}.
5\times 3\sqrt{3}-5\times \frac{9\sqrt{3}}{4}-2\sqrt{3}
Calculate the square root of 16 and get 4.
5\times 3\sqrt{3}+\frac{-5\times 9\sqrt{3}}{4}-2\sqrt{3}
Express -5\times \frac{9\sqrt{3}}{4} as a single fraction.
15\sqrt{3}+\frac{-5\times 9\sqrt{3}}{4}-2\sqrt{3}
Multiply 5 and 3 to get 15.
15\sqrt{3}+\frac{-45\sqrt{3}}{4}-2\sqrt{3}
Multiply -5 and 9 to get -45.
\frac{15}{4}\sqrt{3}-2\sqrt{3}
Combine 15\sqrt{3} and \frac{-45\sqrt{3}}{4} to get \frac{15}{4}\sqrt{3}.
\frac{7}{4}\sqrt{3}
Combine \frac{15}{4}\sqrt{3} and -2\sqrt{3} to get \frac{7}{4}\sqrt{3}.