Evaluate
\frac{81}{20}=4.05
Factor
\frac{3 ^ {4}}{2 ^ {2} \cdot 5} = 4\frac{1}{20} = 4.05
Share
Copied to clipboard
\frac{100+3}{10}-\left(\frac{2\times 10+45}{10}-\frac{1}{4}\right)
Multiply 10 and 10 to get 100.
\frac{103}{10}-\left(\frac{2\times 10+45}{10}-\frac{1}{4}\right)
Add 100 and 3 to get 103.
\frac{103}{10}-\left(\frac{20+45}{10}-\frac{1}{4}\right)
Multiply 2 and 10 to get 20.
\frac{103}{10}-\left(\frac{65}{10}-\frac{1}{4}\right)
Add 20 and 45 to get 65.
\frac{103}{10}-\left(\frac{13}{2}-\frac{1}{4}\right)
Reduce the fraction \frac{65}{10} to lowest terms by extracting and canceling out 5.
\frac{103}{10}-\left(\frac{26}{4}-\frac{1}{4}\right)
Least common multiple of 2 and 4 is 4. Convert \frac{13}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{103}{10}-\frac{26-1}{4}
Since \frac{26}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{103}{10}-\frac{25}{4}
Subtract 1 from 26 to get 25.
\frac{206}{20}-\frac{125}{20}
Least common multiple of 10 and 4 is 20. Convert \frac{103}{10} and \frac{25}{4} to fractions with denominator 20.
\frac{206-125}{20}
Since \frac{206}{20} and \frac{125}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{81}{20}
Subtract 125 from 206 to get 81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}