Solve for F
F=-\frac{E^{2}}{4}+25-\sqrt{10}
Solve for E (complex solution)
E=-2\sqrt{-F+25-\sqrt{10}}
E=2\sqrt{-F+25-\sqrt{10}}
Solve for E
E=2\sqrt{-F+25-\sqrt{10}}
E=-2\sqrt{-F+25-\sqrt{10}}\text{, }F\leq 25-\sqrt{10}
Share
Copied to clipboard
100-E^{2}-4F=\sqrt{8^{2}+10^{2}-4}
Calculate 10 to the power of 2 and get 100.
100-E^{2}-4F=\sqrt{64+10^{2}-4}
Calculate 8 to the power of 2 and get 64.
100-E^{2}-4F=\sqrt{64+100-4}
Calculate 10 to the power of 2 and get 100.
100-E^{2}-4F=\sqrt{164-4}
Add 64 and 100 to get 164.
100-E^{2}-4F=\sqrt{160}
Subtract 4 from 164 to get 160.
100-E^{2}-4F=4\sqrt{10}
Factor 160=4^{2}\times 10. Rewrite the square root of the product \sqrt{4^{2}\times 10} as the product of square roots \sqrt{4^{2}}\sqrt{10}. Take the square root of 4^{2}.
-E^{2}-4F=4\sqrt{10}-100
Subtract 100 from both sides.
-4F=4\sqrt{10}-100+E^{2}
Add E^{2} to both sides.
-4F=E^{2}+4\sqrt{10}-100
The equation is in standard form.
\frac{-4F}{-4}=\frac{E^{2}+4\sqrt{10}-100}{-4}
Divide both sides by -4.
F=\frac{E^{2}+4\sqrt{10}-100}{-4}
Dividing by -4 undoes the multiplication by -4.
F=-\frac{E^{2}}{4}+25-\sqrt{10}
Divide 4\sqrt{10}-100+E^{2} by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}