Solve for x
x=26\ln(500001)\approx 341.181499812
Solve for x (complex solution)
x=26\ln(500001)+i\times 52\pi n_{1}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{1}{1000000}\left(e^{\frac{x}{26}}-1\right)=0.5
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{1}{1000000}e^{\frac{x}{26}}-\frac{1}{1000000}=0.5
Use the distributive property to multiply \frac{1}{1000000} by e^{\frac{x}{26}}-1.
\frac{1}{1000000}e^{\frac{1}{26}x}-\frac{1}{1000000}=0.5
Use the rules of exponents and logarithms to solve the equation.
\frac{1}{1000000}e^{\frac{1}{26}x}=\frac{500001}{1000000}
Add \frac{1}{1000000} to both sides of the equation.
e^{\frac{1}{26}x}=500001
Multiply both sides by 1000000.
\log(e^{\frac{1}{26}x})=\log(500001)
Take the logarithm of both sides of the equation.
\frac{1}{26}x\log(e)=\log(500001)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\frac{1}{26}x=\frac{\log(500001)}{\log(e)}
Divide both sides by \log(e).
\frac{1}{26}x=\log_{e}\left(500001\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(500001)}{\frac{1}{26}}
Multiply both sides by 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}