Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

10\times 12=3t^{2}
Multiply both sides by 12.
120=3t^{2}
Multiply 10 and 12 to get 120.
3t^{2}=120
Swap sides so that all variable terms are on the left hand side.
t^{2}=\frac{120}{3}
Divide both sides by 3.
t^{2}=40
Divide 120 by 3 to get 40.
t=2\sqrt{10} t=-2\sqrt{10}
Take the square root of both sides of the equation.
10\times 12=3t^{2}
Multiply both sides by 12.
120=3t^{2}
Multiply 10 and 12 to get 120.
3t^{2}=120
Swap sides so that all variable terms are on the left hand side.
3t^{2}-120=0
Subtract 120 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 3\left(-120\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 3\left(-120\right)}}{2\times 3}
Square 0.
t=\frac{0±\sqrt{-12\left(-120\right)}}{2\times 3}
Multiply -4 times 3.
t=\frac{0±\sqrt{1440}}{2\times 3}
Multiply -12 times -120.
t=\frac{0±12\sqrt{10}}{2\times 3}
Take the square root of 1440.
t=\frac{0±12\sqrt{10}}{6}
Multiply 2 times 3.
t=2\sqrt{10}
Now solve the equation t=\frac{0±12\sqrt{10}}{6} when ± is plus.
t=-2\sqrt{10}
Now solve the equation t=\frac{0±12\sqrt{10}}{6} when ± is minus.
t=2\sqrt{10} t=-2\sqrt{10}
The equation is now solved.