Solve for ω
\omega =\frac{56075\omega _{1}}{87}-\frac{2499739}{261}
Solve for ω_1
\omega _{1}=\frac{87\omega }{56075}+\frac{2499739}{168225}
Share
Copied to clipboard
10=\omega _{1}\times 0.6729+0.001044-0.001044\omega
Use the distributive property to multiply 1-\omega by 0.001044.
\omega _{1}\times 0.6729+0.001044-0.001044\omega =10
Swap sides so that all variable terms are on the left hand side.
0.001044-0.001044\omega =10-\omega _{1}\times 0.6729
Subtract \omega _{1}\times 0.6729 from both sides.
-0.001044\omega =10-\omega _{1}\times 0.6729-0.001044
Subtract 0.001044 from both sides.
-0.001044\omega =10-0.6729\omega _{1}-0.001044
Multiply -1 and 0.6729 to get -0.6729.
-0.001044\omega =9.998956-0.6729\omega _{1}
Subtract 0.001044 from 10 to get 9.998956.
-0.001044\omega =-\frac{6729\omega _{1}}{10000}+9.998956
The equation is in standard form.
\frac{-0.001044\omega }{-0.001044}=\frac{-\frac{6729\omega _{1}}{10000}+9.998956}{-0.001044}
Divide both sides of the equation by -0.001044, which is the same as multiplying both sides by the reciprocal of the fraction.
\omega =\frac{-\frac{6729\omega _{1}}{10000}+9.998956}{-0.001044}
Dividing by -0.001044 undoes the multiplication by -0.001044.
\omega =\frac{56075\omega _{1}}{87}-\frac{2499739}{261}
Divide 9.998956-\frac{6729\omega _{1}}{10000} by -0.001044 by multiplying 9.998956-\frac{6729\omega _{1}}{10000} by the reciprocal of -0.001044.
10=\omega _{1}\times 0.6729+0.001044-0.001044\omega
Use the distributive property to multiply 1-\omega by 0.001044.
\omega _{1}\times 0.6729+0.001044-0.001044\omega =10
Swap sides so that all variable terms are on the left hand side.
\omega _{1}\times 0.6729-0.001044\omega =10-0.001044
Subtract 0.001044 from both sides.
\omega _{1}\times 0.6729-0.001044\omega =9.998956
Subtract 0.001044 from 10 to get 9.998956.
\omega _{1}\times 0.6729=9.998956+0.001044\omega
Add 0.001044\omega to both sides.
0.6729\omega _{1}=\frac{261\omega +2499739}{250000}
The equation is in standard form.
\frac{0.6729\omega _{1}}{0.6729}=\frac{261\omega +2499739}{0.6729\times 250000}
Divide both sides of the equation by 0.6729, which is the same as multiplying both sides by the reciprocal of the fraction.
\omega _{1}=\frac{261\omega +2499739}{0.6729\times 250000}
Dividing by 0.6729 undoes the multiplication by 0.6729.
\omega _{1}=\frac{87\omega }{56075}+\frac{2499739}{168225}
Divide \frac{2499739+261\omega }{250000} by 0.6729 by multiplying \frac{2499739+261\omega }{250000} by the reciprocal of 0.6729.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}