Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6m^{2}+19m+10
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=19 ab=6\times 10=60
Factor the expression by grouping. First, the expression needs to be rewritten as 6m^{2}+am+bm+10. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=4 b=15
The solution is the pair that gives sum 19.
\left(6m^{2}+4m\right)+\left(15m+10\right)
Rewrite 6m^{2}+19m+10 as \left(6m^{2}+4m\right)+\left(15m+10\right).
2m\left(3m+2\right)+5\left(3m+2\right)
Factor out 2m in the first and 5 in the second group.
\left(3m+2\right)\left(2m+5\right)
Factor out common term 3m+2 by using distributive property.
6m^{2}+19m+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-19±\sqrt{19^{2}-4\times 6\times 10}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-19±\sqrt{361-4\times 6\times 10}}{2\times 6}
Square 19.
m=\frac{-19±\sqrt{361-24\times 10}}{2\times 6}
Multiply -4 times 6.
m=\frac{-19±\sqrt{361-240}}{2\times 6}
Multiply -24 times 10.
m=\frac{-19±\sqrt{121}}{2\times 6}
Add 361 to -240.
m=\frac{-19±11}{2\times 6}
Take the square root of 121.
m=\frac{-19±11}{12}
Multiply 2 times 6.
m=-\frac{8}{12}
Now solve the equation m=\frac{-19±11}{12} when ± is plus. Add -19 to 11.
m=-\frac{2}{3}
Reduce the fraction \frac{-8}{12} to lowest terms by extracting and canceling out 4.
m=-\frac{30}{12}
Now solve the equation m=\frac{-19±11}{12} when ± is minus. Subtract 11 from -19.
m=-\frac{5}{2}
Reduce the fraction \frac{-30}{12} to lowest terms by extracting and canceling out 6.
6m^{2}+19m+10=6\left(m-\left(-\frac{2}{3}\right)\right)\left(m-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{3} for x_{1} and -\frac{5}{2} for x_{2}.
6m^{2}+19m+10=6\left(m+\frac{2}{3}\right)\left(m+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6m^{2}+19m+10=6\times \frac{3m+2}{3}\left(m+\frac{5}{2}\right)
Add \frac{2}{3} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6m^{2}+19m+10=6\times \frac{3m+2}{3}\times \frac{2m+5}{2}
Add \frac{5}{2} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6m^{2}+19m+10=6\times \frac{\left(3m+2\right)\left(2m+5\right)}{3\times 2}
Multiply \frac{3m+2}{3} times \frac{2m+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
6m^{2}+19m+10=6\times \frac{\left(3m+2\right)\left(2m+5\right)}{6}
Multiply 3 times 2.
6m^{2}+19m+10=\left(3m+2\right)\left(2m+5\right)
Cancel out 6, the greatest common factor in 6 and 6.