Solve for b
b=-4-\frac{1}{3y}
y\neq 0
Solve for y
y=-\frac{1}{3\left(b+4\right)}
b\neq -4
Graph
Share
Copied to clipboard
10+30by+120y=0
Use the distributive property to multiply 10y by 3b+12.
30by+120y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
30by=-10-120y
Subtract 120y from both sides.
30yb=-120y-10
The equation is in standard form.
\frac{30yb}{30y}=\frac{-120y-10}{30y}
Divide both sides by 30y.
b=\frac{-120y-10}{30y}
Dividing by 30y undoes the multiplication by 30y.
b=-4-\frac{1}{3y}
Divide -10-120y by 30y.
10+30by+120y=0
Use the distributive property to multiply 10y by 3b+12.
30by+120y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\left(30b+120\right)y=-10
Combine all terms containing y.
\frac{\left(30b+120\right)y}{30b+120}=-\frac{10}{30b+120}
Divide both sides by 30b+120.
y=-\frac{10}{30b+120}
Dividing by 30b+120 undoes the multiplication by 30b+120.
y=-\frac{1}{3\left(b+4\right)}
Divide -10 by 30b+120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}