1.8(1100-x) \geq 1.2(1+25 \% )x
Solve for x
x\leq 600
Graph
Share
Copied to clipboard
1980-1.8x\geq 1.2\left(1+\frac{25}{100}\right)x
Use the distributive property to multiply 1.8 by 1100-x.
1980-1.8x\geq 1.2\left(1+\frac{1}{4}\right)x
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
1980-1.8x\geq 1.2\left(\frac{4}{4}+\frac{1}{4}\right)x
Convert 1 to fraction \frac{4}{4}.
1980-1.8x\geq 1.2\times \frac{4+1}{4}x
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
1980-1.8x\geq 1.2\times \frac{5}{4}x
Add 4 and 1 to get 5.
1980-1.8x\geq \frac{6}{5}\times \frac{5}{4}x
Convert decimal number 1.2 to fraction \frac{12}{10}. Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
1980-1.8x\geq \frac{6\times 5}{5\times 4}x
Multiply \frac{6}{5} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
1980-1.8x\geq \frac{6}{4}x
Cancel out 5 in both numerator and denominator.
1980-1.8x\geq \frac{3}{2}x
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
1980-1.8x-\frac{3}{2}x\geq 0
Subtract \frac{3}{2}x from both sides.
1980-\frac{33}{10}x\geq 0
Combine -1.8x and -\frac{3}{2}x to get -\frac{33}{10}x.
-\frac{33}{10}x\geq -1980
Subtract 1980 from both sides. Anything subtracted from zero gives its negation.
x\leq -1980\left(-\frac{10}{33}\right)
Multiply both sides by -\frac{10}{33}, the reciprocal of -\frac{33}{10}. Since -\frac{33}{10} is negative, the inequality direction is changed.
x\leq \frac{-1980\left(-10\right)}{33}
Express -1980\left(-\frac{10}{33}\right) as a single fraction.
x\leq \frac{19800}{33}
Multiply -1980 and -10 to get 19800.
x\leq 600
Divide 19800 by 33 to get 600.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}