Evaluate
4.3
Factor
\frac{43}{2 \cdot 5} = 4\frac{3}{10} = 4.3
Share
Copied to clipboard
1.8-\frac{18}{5}-\left(-\frac{6\times 10+1}{10}\right)
Fraction \frac{-18}{5} can be rewritten as -\frac{18}{5} by extracting the negative sign.
\frac{9}{5}-\frac{18}{5}-\left(-\frac{6\times 10+1}{10}\right)
Convert decimal number 1.8 to fraction \frac{18}{10}. Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
\frac{9-18}{5}-\left(-\frac{6\times 10+1}{10}\right)
Since \frac{9}{5} and \frac{18}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{9}{5}-\left(-\frac{6\times 10+1}{10}\right)
Subtract 18 from 9 to get -9.
-\frac{9}{5}-\left(-\frac{60+1}{10}\right)
Multiply 6 and 10 to get 60.
-\frac{9}{5}-\left(-\frac{61}{10}\right)
Add 60 and 1 to get 61.
-\frac{9}{5}+\frac{61}{10}
The opposite of -\frac{61}{10} is \frac{61}{10}.
-\frac{18}{10}+\frac{61}{10}
Least common multiple of 5 and 10 is 10. Convert -\frac{9}{5} and \frac{61}{10} to fractions with denominator 10.
\frac{-18+61}{10}
Since -\frac{18}{10} and \frac{61}{10} have the same denominator, add them by adding their numerators.
\frac{43}{10}
Add -18 and 61 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}