Solve for x
x=\frac{3y+5}{2}
Solve for y
y=\frac{2x-5}{3}
Graph
Share
Copied to clipboard
1.6x=4+2.4y
Add 2.4y to both sides.
1.6x=\frac{12y}{5}+4
The equation is in standard form.
\frac{1.6x}{1.6}=\frac{\frac{12y}{5}+4}{1.6}
Divide both sides of the equation by 1.6, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{12y}{5}+4}{1.6}
Dividing by 1.6 undoes the multiplication by 1.6.
x=\frac{3y+5}{2}
Divide 4+\frac{12y}{5} by 1.6 by multiplying 4+\frac{12y}{5} by the reciprocal of 1.6.
-2.4y=4-1.6x
Subtract 1.6x from both sides.
-2.4y=-\frac{8x}{5}+4
The equation is in standard form.
\frac{-2.4y}{-2.4}=\frac{-\frac{8x}{5}+4}{-2.4}
Divide both sides of the equation by -2.4, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{8x}{5}+4}{-2.4}
Dividing by -2.4 undoes the multiplication by -2.4.
y=\frac{2x-5}{3}
Divide 4-\frac{8x}{5} by -2.4 by multiplying 4-\frac{8x}{5} by the reciprocal of -2.4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}