Solve for x
x=\frac{448-4y}{3}
Solve for y
y=-\frac{3x}{4}+112
Graph
Share
Copied to clipboard
1.5x=224-2y
Subtract 2y from both sides.
\frac{1.5x}{1.5}=\frac{224-2y}{1.5}
Divide both sides of the equation by 1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{224-2y}{1.5}
Dividing by 1.5 undoes the multiplication by 1.5.
x=\frac{448-4y}{3}
Divide 224-2y by 1.5 by multiplying 224-2y by the reciprocal of 1.5.
2y=224-1.5x
Subtract 1.5x from both sides.
2y=-\frac{3x}{2}+224
The equation is in standard form.
\frac{2y}{2}=\frac{-\frac{3x}{2}+224}{2}
Divide both sides by 2.
y=\frac{-\frac{3x}{2}+224}{2}
Dividing by 2 undoes the multiplication by 2.
y=-\frac{3x}{4}+112
Divide 224-\frac{3x}{2} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}