Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+1.4x=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+1.4x-1=1-1
Subtract 1 from both sides of the equation.
-2x^{2}+1.4x-1=0
Subtracting 1 from itself leaves 0.
x=\frac{-1.4±\sqrt{1.4^{2}-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1.4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.4±\sqrt{1.96-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Square 1.4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.4±\sqrt{1.96+8\left(-1\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-1.4±\sqrt{1.96-8}}{2\left(-2\right)}
Multiply 8 times -1.
x=\frac{-1.4±\sqrt{-6.04}}{2\left(-2\right)}
Add 1.96 to -8.
x=\frac{-1.4±\frac{\sqrt{151}i}{5}}{2\left(-2\right)}
Take the square root of -6.04.
x=\frac{-1.4±\frac{\sqrt{151}i}{5}}{-4}
Multiply 2 times -2.
x=\frac{-7+\sqrt{151}i}{-4\times 5}
Now solve the equation x=\frac{-1.4±\frac{\sqrt{151}i}{5}}{-4} when ± is plus. Add -1.4 to \frac{i\sqrt{151}}{5}.
x=\frac{-\sqrt{151}i+7}{20}
Divide \frac{-7+i\sqrt{151}}{5} by -4.
x=\frac{-\sqrt{151}i-7}{-4\times 5}
Now solve the equation x=\frac{-1.4±\frac{\sqrt{151}i}{5}}{-4} when ± is minus. Subtract \frac{i\sqrt{151}}{5} from -1.4.
x=\frac{7+\sqrt{151}i}{20}
Divide \frac{-7-i\sqrt{151}}{5} by -4.
x=\frac{-\sqrt{151}i+7}{20} x=\frac{7+\sqrt{151}i}{20}
The equation is now solved.
-2x^{2}+1.4x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+1.4x}{-2}=\frac{1}{-2}
Divide both sides by -2.
x^{2}+\frac{1.4}{-2}x=\frac{1}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-0.7x=\frac{1}{-2}
Divide 1.4 by -2.
x^{2}-0.7x=-\frac{1}{2}
Divide 1 by -2.
x^{2}-0.7x+\left(-0.35\right)^{2}=-\frac{1}{2}+\left(-0.35\right)^{2}
Divide -0.7, the coefficient of the x term, by 2 to get -0.35. Then add the square of -0.35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.7x+0.1225=-\frac{1}{2}+0.1225
Square -0.35 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.7x+0.1225=-\frac{151}{400}
Add -\frac{1}{2} to 0.1225 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.35\right)^{2}=-\frac{151}{400}
Factor x^{2}-0.7x+0.1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.35\right)^{2}}=\sqrt{-\frac{151}{400}}
Take the square root of both sides of the equation.
x-0.35=\frac{\sqrt{151}i}{20} x-0.35=-\frac{\sqrt{151}i}{20}
Simplify.
x=\frac{7+\sqrt{151}i}{20} x=\frac{-\sqrt{151}i+7}{20}
Add 0.35 to both sides of the equation.