Solve for x
x=\frac{535000000000000000}{663}\approx 8.069381599 \cdot 10^{14}
Graph
Share
Copied to clipboard
1.28=\left(1\times 1000000000000000-x\right)\times 6.63\times 10^{-15}
Calculate 10 to the power of 15 and get 1000000000000000.
1.28=\left(1000000000000000-x\right)\times 6.63\times 10^{-15}
Multiply 1 and 1000000000000000 to get 1000000000000000.
1.28=\left(1000000000000000-x\right)\times 6.63\times \frac{1}{1000000000000000}
Calculate 10 to the power of -15 and get \frac{1}{1000000000000000}.
1.28=\left(1000000000000000-x\right)\times \frac{663}{100000000000000000}
Multiply 6.63 and \frac{1}{1000000000000000} to get \frac{663}{100000000000000000}.
1.28=\frac{663}{100}-\frac{663}{100000000000000000}x
Use the distributive property to multiply 1000000000000000-x by \frac{663}{100000000000000000}.
\frac{663}{100}-\frac{663}{100000000000000000}x=1.28
Swap sides so that all variable terms are on the left hand side.
-\frac{663}{100000000000000000}x=1.28-\frac{663}{100}
Subtract \frac{663}{100} from both sides.
-\frac{663}{100000000000000000}x=-\frac{107}{20}
Subtract \frac{663}{100} from 1.28 to get -\frac{107}{20}.
x=-\frac{107}{20}\left(-\frac{100000000000000000}{663}\right)
Multiply both sides by -\frac{100000000000000000}{663}, the reciprocal of -\frac{663}{100000000000000000}.
x=\frac{535000000000000000}{663}
Multiply -\frac{107}{20} and -\frac{100000000000000000}{663} to get \frac{535000000000000000}{663}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}