Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1.25x^{2}-390x+361.25=0
Multiply 78 and 5 to get 390.
x=\frac{-\left(-390\right)±\sqrt{\left(-390\right)^{2}-4\times 1.25\times 361.25}}{2\times 1.25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.25 for a, -390 for b, and 361.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-390\right)±\sqrt{152100-4\times 1.25\times 361.25}}{2\times 1.25}
Square -390.
x=\frac{-\left(-390\right)±\sqrt{152100-5\times 361.25}}{2\times 1.25}
Multiply -4 times 1.25.
x=\frac{-\left(-390\right)±\sqrt{152100-1806.25}}{2\times 1.25}
Multiply -5 times 361.25.
x=\frac{-\left(-390\right)±\sqrt{150293.75}}{2\times 1.25}
Add 152100 to -1806.25.
x=\frac{-\left(-390\right)±\frac{5\sqrt{24047}}{2}}{2\times 1.25}
Take the square root of 150293.75.
x=\frac{390±\frac{5\sqrt{24047}}{2}}{2\times 1.25}
The opposite of -390 is 390.
x=\frac{390±\frac{5\sqrt{24047}}{2}}{2.5}
Multiply 2 times 1.25.
x=\frac{\frac{5\sqrt{24047}}{2}+390}{2.5}
Now solve the equation x=\frac{390±\frac{5\sqrt{24047}}{2}}{2.5} when ± is plus. Add 390 to \frac{5\sqrt{24047}}{2}.
x=\sqrt{24047}+156
Divide 390+\frac{5\sqrt{24047}}{2} by 2.5 by multiplying 390+\frac{5\sqrt{24047}}{2} by the reciprocal of 2.5.
x=\frac{-\frac{5\sqrt{24047}}{2}+390}{2.5}
Now solve the equation x=\frac{390±\frac{5\sqrt{24047}}{2}}{2.5} when ± is minus. Subtract \frac{5\sqrt{24047}}{2} from 390.
x=156-\sqrt{24047}
Divide 390-\frac{5\sqrt{24047}}{2} by 2.5 by multiplying 390-\frac{5\sqrt{24047}}{2} by the reciprocal of 2.5.
x=\sqrt{24047}+156 x=156-\sqrt{24047}
The equation is now solved.
1.25x^{2}-390x+361.25=0
Multiply 78 and 5 to get 390.
1.25x^{2}-390x=-361.25
Subtract 361.25 from both sides. Anything subtracted from zero gives its negation.
\frac{1.25x^{2}-390x}{1.25}=-\frac{361.25}{1.25}
Divide both sides of the equation by 1.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{390}{1.25}\right)x=-\frac{361.25}{1.25}
Dividing by 1.25 undoes the multiplication by 1.25.
x^{2}-312x=-\frac{361.25}{1.25}
Divide -390 by 1.25 by multiplying -390 by the reciprocal of 1.25.
x^{2}-312x=-289
Divide -361.25 by 1.25 by multiplying -361.25 by the reciprocal of 1.25.
x^{2}-312x+\left(-156\right)^{2}=-289+\left(-156\right)^{2}
Divide -312, the coefficient of the x term, by 2 to get -156. Then add the square of -156 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-312x+24336=-289+24336
Square -156.
x^{2}-312x+24336=24047
Add -289 to 24336.
\left(x-156\right)^{2}=24047
Factor x^{2}-312x+24336. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-156\right)^{2}}=\sqrt{24047}
Take the square root of both sides of the equation.
x-156=\sqrt{24047} x-156=-\sqrt{24047}
Simplify.
x=\sqrt{24047}+156 x=156-\sqrt{24047}
Add 156 to both sides of the equation.