Solve for x
x=\frac{145y}{6}+19500
Solve for y
y=\frac{6\left(x-19500\right)}{145}
Graph
Share
Copied to clipboard
1.2x-29y=23400
Add 12000 and 11400 to get 23400.
1.2x=23400+29y
Add 29y to both sides.
1.2x=29y+23400
The equation is in standard form.
\frac{1.2x}{1.2}=\frac{29y+23400}{1.2}
Divide both sides of the equation by 1.2, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{29y+23400}{1.2}
Dividing by 1.2 undoes the multiplication by 1.2.
x=\frac{145y}{6}+19500
Divide 23400+29y by 1.2 by multiplying 23400+29y by the reciprocal of 1.2.
1.2x-29y=23400
Add 12000 and 11400 to get 23400.
-29y=23400-1.2x
Subtract 1.2x from both sides.
-29y=-\frac{6x}{5}+23400
The equation is in standard form.
\frac{-29y}{-29}=\frac{-\frac{6x}{5}+23400}{-29}
Divide both sides by -29.
y=\frac{-\frac{6x}{5}+23400}{-29}
Dividing by -29 undoes the multiplication by -29.
y=\frac{6x}{145}-\frac{23400}{29}
Divide 23400-\frac{6x}{5} by -29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}