Verify
false
Share
Copied to clipboard
1.2-\frac{7.5}{0.6}=0.2
Multiply 0.75 and 10 to get 7.5.
1.2-\frac{75}{6}=0.2
Expand \frac{7.5}{0.6} by multiplying both numerator and the denominator by 10.
1.2-\frac{25}{2}=0.2
Reduce the fraction \frac{75}{6} to lowest terms by extracting and canceling out 3.
\frac{6}{5}-\frac{25}{2}=0.2
Convert decimal number 1.2 to fraction \frac{12}{10}. Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{12}{10}-\frac{125}{10}=0.2
Least common multiple of 5 and 2 is 10. Convert \frac{6}{5} and \frac{25}{2} to fractions with denominator 10.
\frac{12-125}{10}=0.2
Since \frac{12}{10} and \frac{125}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{113}{10}=0.2
Subtract 125 from 12 to get -113.
-\frac{113}{10}=\frac{1}{5}
Convert decimal number 0.2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
-\frac{113}{10}=\frac{2}{10}
Least common multiple of 10 and 5 is 10. Convert -\frac{113}{10} and \frac{1}{5} to fractions with denominator 10.
\text{false}
Compare -\frac{113}{10} and \frac{2}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}