Skip to main content
Solve for t
Tick mark Image
Solve for t_3
Tick mark Image

Similar Problems from Web Search

Share

1.06=\frac{7.044\times \frac{1}{1000}t+1}{1.824}+\frac{t_{3}}{0.128\times 10^{7}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
1.06=\frac{\frac{1761}{250000}t+1}{1.824}+\frac{t_{3}}{0.128\times 10^{7}}
Multiply 7.044 and \frac{1}{1000} to get \frac{1761}{250000}.
1.06=\frac{\frac{1761}{250000}t+1}{1.824}+\frac{t_{3}}{0.128\times 10000000}
Calculate 10 to the power of 7 and get 10000000.
1.06=\frac{\frac{1761}{250000}t+1}{1.824}+\frac{t_{3}}{1280000}
Multiply 0.128 and 10000000 to get 1280000.
1.06=\frac{\frac{1761}{250000}t}{1.824}+\frac{1}{1.824}+\frac{t_{3}}{1280000}
Divide each term of \frac{1761}{250000}t+1 by 1.824 to get \frac{\frac{1761}{250000}t}{1.824}+\frac{1}{1.824}.
1.06=\frac{587}{152000}t+\frac{1}{1.824}+\frac{t_{3}}{1280000}
Divide \frac{1761}{250000}t by 1.824 to get \frac{587}{152000}t.
1.06=\frac{587}{152000}t+\frac{1000}{1824}+\frac{t_{3}}{1280000}
Expand \frac{1}{1.824} by multiplying both numerator and the denominator by 1000.
1.06=\frac{587}{152000}t+\frac{125}{228}+\frac{t_{3}}{1280000}
Reduce the fraction \frac{1000}{1824} to lowest terms by extracting and canceling out 8.
1.06=\frac{587}{152000}t+\frac{125\times 320000}{72960000}+\frac{57t_{3}}{72960000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 228 and 1280000 is 72960000. Multiply \frac{125}{228} times \frac{320000}{320000}. Multiply \frac{t_{3}}{1280000} times \frac{57}{57}.
1.06=\frac{587}{152000}t+\frac{125\times 320000+57t_{3}}{72960000}
Since \frac{125\times 320000}{72960000} and \frac{57t_{3}}{72960000} have the same denominator, add them by adding their numerators.
1.06=\frac{587}{152000}t+\frac{40000000+57t_{3}}{72960000}
Do the multiplications in 125\times 320000+57t_{3}.
\frac{587}{152000}t+\frac{40000000+57t_{3}}{72960000}=1.06
Swap sides so that all variable terms are on the left hand side.
\frac{587}{152000}t+\frac{125}{228}+\frac{1}{1280000}t_{3}=1.06
Divide each term of 40000000+57t_{3} by 72960000 to get \frac{125}{228}+\frac{1}{1280000}t_{3}.
\frac{587}{152000}t+\frac{1}{1280000}t_{3}=1.06-\frac{125}{228}
Subtract \frac{125}{228} from both sides.
\frac{587}{152000}t+\frac{1}{1280000}t_{3}=\frac{2917}{5700}
Subtract \frac{125}{228} from 1.06 to get \frac{2917}{5700}.
\frac{587}{152000}t=\frac{2917}{5700}-\frac{1}{1280000}t_{3}
Subtract \frac{1}{1280000}t_{3} from both sides.
\frac{587}{152000}t=-\frac{t_{3}}{1280000}+\frac{2917}{5700}
The equation is in standard form.
\frac{\frac{587}{152000}t}{\frac{587}{152000}}=\frac{-\frac{t_{3}}{1280000}+\frac{2917}{5700}}{\frac{587}{152000}}
Divide both sides of the equation by \frac{587}{152000}, which is the same as multiplying both sides by the reciprocal of the fraction.
t=\frac{-\frac{t_{3}}{1280000}+\frac{2917}{5700}}{\frac{587}{152000}}
Dividing by \frac{587}{152000} undoes the multiplication by \frac{587}{152000}.
t=-\frac{19t_{3}}{93920}+\frac{233360}{1761}
Divide \frac{2917}{5700}-\frac{t_{3}}{1280000} by \frac{587}{152000} by multiplying \frac{2917}{5700}-\frac{t_{3}}{1280000} by the reciprocal of \frac{587}{152000}.
1.06=\frac{7.044\times \frac{1}{1000}t+1}{1.824}+\frac{t_{3}}{0.128\times 10^{7}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
1.06=\frac{\frac{1761}{250000}t+1}{1.824}+\frac{t_{3}}{0.128\times 10^{7}}
Multiply 7.044 and \frac{1}{1000} to get \frac{1761}{250000}.
1.06=\frac{\frac{1761}{250000}t+1}{1.824}+\frac{t_{3}}{0.128\times 10000000}
Calculate 10 to the power of 7 and get 10000000.
1.06=\frac{\frac{1761}{250000}t+1}{1.824}+\frac{t_{3}}{1280000}
Multiply 0.128 and 10000000 to get 1280000.
1.06=\frac{\frac{1761}{250000}t}{1.824}+\frac{1}{1.824}+\frac{t_{3}}{1280000}
Divide each term of \frac{1761}{250000}t+1 by 1.824 to get \frac{\frac{1761}{250000}t}{1.824}+\frac{1}{1.824}.
1.06=\frac{587}{152000}t+\frac{1}{1.824}+\frac{t_{3}}{1280000}
Divide \frac{1761}{250000}t by 1.824 to get \frac{587}{152000}t.
1.06=\frac{587}{152000}t+\frac{1000}{1824}+\frac{t_{3}}{1280000}
Expand \frac{1}{1.824} by multiplying both numerator and the denominator by 1000.
1.06=\frac{587}{152000}t+\frac{125}{228}+\frac{t_{3}}{1280000}
Reduce the fraction \frac{1000}{1824} to lowest terms by extracting and canceling out 8.
1.06=\frac{587}{152000}t+\frac{125\times 320000}{72960000}+\frac{57t_{3}}{72960000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 228 and 1280000 is 72960000. Multiply \frac{125}{228} times \frac{320000}{320000}. Multiply \frac{t_{3}}{1280000} times \frac{57}{57}.
1.06=\frac{587}{152000}t+\frac{125\times 320000+57t_{3}}{72960000}
Since \frac{125\times 320000}{72960000} and \frac{57t_{3}}{72960000} have the same denominator, add them by adding their numerators.
1.06=\frac{587}{152000}t+\frac{40000000+57t_{3}}{72960000}
Do the multiplications in 125\times 320000+57t_{3}.
\frac{587}{152000}t+\frac{40000000+57t_{3}}{72960000}=1.06
Swap sides so that all variable terms are on the left hand side.
\frac{587}{152000}t+\frac{125}{228}+\frac{1}{1280000}t_{3}=1.06
Divide each term of 40000000+57t_{3} by 72960000 to get \frac{125}{228}+\frac{1}{1280000}t_{3}.
\frac{125}{228}+\frac{1}{1280000}t_{3}=1.06-\frac{587}{152000}t
Subtract \frac{587}{152000}t from both sides.
\frac{1}{1280000}t_{3}=1.06-\frac{587}{152000}t-\frac{125}{228}
Subtract \frac{125}{228} from both sides.
\frac{1}{1280000}t_{3}=\frac{2917}{5700}-\frac{587}{152000}t
Subtract \frac{125}{228} from 1.06 to get \frac{2917}{5700}.
\frac{1}{1280000}t_{3}=-\frac{587t}{152000}+\frac{2917}{5700}
The equation is in standard form.
\frac{\frac{1}{1280000}t_{3}}{\frac{1}{1280000}}=\frac{-\frac{587t}{152000}+\frac{2917}{5700}}{\frac{1}{1280000}}
Multiply both sides by 1280000.
t_{3}=\frac{-\frac{587t}{152000}+\frac{2917}{5700}}{\frac{1}{1280000}}
Dividing by \frac{1}{1280000} undoes the multiplication by \frac{1}{1280000}.
t_{3}=-\frac{93920t}{19}+\frac{37337600}{57}
Divide \frac{2917}{5700}-\frac{587t}{152000} by \frac{1}{1280000} by multiplying \frac{2917}{5700}-\frac{587t}{152000} by the reciprocal of \frac{1}{1280000}.