Solve for p
p=\frac{15404402685000+i\times 5000\sqrt{2088619926374770231}}{1751804177}\approx 8793.450139718+4124.906942198i
p=\frac{-i\times 5000\sqrt{2088619926374770231}+15404402685000}{1751804177}\approx 8793.450139718-4124.906942198i
Share
Copied to clipboard
1.044\times \frac{1}{1000}p=8.3145\times 298.15\left(1-186\times 10^{-6}p+1.06\times 10^{-8}p^{2}\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{261}{250000}p=8.3145\times 298.15\left(1-186\times 10^{-6}p+1.06\times 10^{-8}p^{2}\right)
Multiply 1.044 and \frac{1}{1000} to get \frac{261}{250000}.
\frac{261}{250000}p=2478.968175\left(1-186\times 10^{-6}p+1.06\times 10^{-8}p^{2}\right)
Multiply 8.3145 and 298.15 to get 2478.968175.
\frac{261}{250000}p=2478.968175\left(1-186\times \frac{1}{1000000}p+1.06\times 10^{-8}p^{2}\right)
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{261}{250000}p=2478.968175\left(1-\frac{93}{500000}p+1.06\times 10^{-8}p^{2}\right)
Multiply 186 and \frac{1}{1000000} to get \frac{93}{500000}.
\frac{261}{250000}p=2478.968175\left(1-\frac{93}{500000}p+1.06\times \frac{1}{100000000}p^{2}\right)
Calculate 10 to the power of -8 and get \frac{1}{100000000}.
\frac{261}{250000}p=2478.968175\left(1-\frac{93}{500000}p+\frac{53}{5000000000}p^{2}\right)
Multiply 1.06 and \frac{1}{100000000} to get \frac{53}{5000000000}.
\frac{261}{250000}p=2478.968175-\frac{9221761611}{20000000000}p+\frac{5255412531}{200000000000000}p^{2}
Use the distributive property to multiply 2478.968175 by 1-\frac{93}{500000}p+\frac{53}{5000000000}p^{2}.
\frac{261}{250000}p-2478.968175=-\frac{9221761611}{20000000000}p+\frac{5255412531}{200000000000000}p^{2}
Subtract 2478.968175 from both sides.
\frac{261}{250000}p-2478.968175+\frac{9221761611}{20000000000}p=\frac{5255412531}{200000000000000}p^{2}
Add \frac{9221761611}{20000000000}p to both sides.
\frac{9242641611}{20000000000}p-2478.968175=\frac{5255412531}{200000000000000}p^{2}
Combine \frac{261}{250000}p and \frac{9221761611}{20000000000}p to get \frac{9242641611}{20000000000}p.
\frac{9242641611}{20000000000}p-2478.968175-\frac{5255412531}{200000000000000}p^{2}=0
Subtract \frac{5255412531}{200000000000000}p^{2} from both sides.
-\frac{5255412531}{200000000000000}p^{2}+\frac{9242641611}{20000000000}p-2478.968175=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\frac{9242641611}{20000000000}±\sqrt{\left(\frac{9242641611}{20000000000}\right)^{2}-4\left(-\frac{5255412531}{200000000000000}\right)\left(-2478.968175\right)}}{2\left(-\frac{5255412531}{200000000000000}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{5255412531}{200000000000000} for a, \frac{9242641611}{20000000000} for b, and -2478.968175 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\frac{9242641611}{20000000000}±\sqrt{\frac{85426423949388675321}{400000000000000000000}-4\left(-\frac{5255412531}{200000000000000}\right)\left(-2478.968175\right)}}{2\left(-\frac{5255412531}{200000000000000}\right)}
Square \frac{9242641611}{20000000000} by squaring both the numerator and the denominator of the fraction.
p=\frac{-\frac{9242641611}{20000000000}±\sqrt{\frac{85426423949388675321}{400000000000000000000}+\frac{5255412531}{50000000000000}\left(-2478.968175\right)}}{2\left(-\frac{5255412531}{200000000000000}\right)}
Multiply -4 times -\frac{5255412531}{200000000000000}.
p=\frac{-\frac{9242641611}{20000000000}±\sqrt{\frac{85426423949388675321}{400000000000000000000}-\frac{521120016433808037}{2000000000000000000}}}{2\left(-\frac{5255412531}{200000000000000}\right)}
Multiply \frac{5255412531}{50000000000000} times -2478.968175 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
p=\frac{-\frac{9242641611}{20000000000}±\sqrt{-\frac{18797579337372932079}{400000000000000000000}}}{2\left(-\frac{5255412531}{200000000000000}\right)}
Add \frac{85426423949388675321}{400000000000000000000} to -\frac{521120016433808037}{2000000000000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
p=\frac{-\frac{9242641611}{20000000000}±\frac{3\sqrt{2088619926374770231}i}{20000000000}}{2\left(-\frac{5255412531}{200000000000000}\right)}
Take the square root of -\frac{18797579337372932079}{400000000000000000000}.
p=\frac{-\frac{9242641611}{20000000000}±\frac{3\sqrt{2088619926374770231}i}{20000000000}}{-\frac{5255412531}{100000000000000}}
Multiply 2 times -\frac{5255412531}{200000000000000}.
p=\frac{-9242641611+3\sqrt{2088619926374770231}i}{-\frac{5255412531}{100000000000000}\times 20000000000}
Now solve the equation p=\frac{-\frac{9242641611}{20000000000}±\frac{3\sqrt{2088619926374770231}i}{20000000000}}{-\frac{5255412531}{100000000000000}} when ± is plus. Add -\frac{9242641611}{20000000000} to \frac{3i\sqrt{2088619926374770231}}{20000000000}.
p=\frac{-5000\sqrt{2088619926374770231}i+15404402685000}{1751804177}
Divide \frac{-9242641611+3i\sqrt{2088619926374770231}}{20000000000} by -\frac{5255412531}{100000000000000} by multiplying \frac{-9242641611+3i\sqrt{2088619926374770231}}{20000000000} by the reciprocal of -\frac{5255412531}{100000000000000}.
p=\frac{-3\sqrt{2088619926374770231}i-9242641611}{-\frac{5255412531}{100000000000000}\times 20000000000}
Now solve the equation p=\frac{-\frac{9242641611}{20000000000}±\frac{3\sqrt{2088619926374770231}i}{20000000000}}{-\frac{5255412531}{100000000000000}} when ± is minus. Subtract \frac{3i\sqrt{2088619926374770231}}{20000000000} from -\frac{9242641611}{20000000000}.
p=\frac{15404402685000+5000\sqrt{2088619926374770231}i}{1751804177}
Divide \frac{-9242641611-3i\sqrt{2088619926374770231}}{20000000000} by -\frac{5255412531}{100000000000000} by multiplying \frac{-9242641611-3i\sqrt{2088619926374770231}}{20000000000} by the reciprocal of -\frac{5255412531}{100000000000000}.
p=\frac{-5000\sqrt{2088619926374770231}i+15404402685000}{1751804177} p=\frac{15404402685000+5000\sqrt{2088619926374770231}i}{1751804177}
The equation is now solved.
1.044\times \frac{1}{1000}p=8.3145\times 298.15\left(1-186\times 10^{-6}p+1.06\times 10^{-8}p^{2}\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{261}{250000}p=8.3145\times 298.15\left(1-186\times 10^{-6}p+1.06\times 10^{-8}p^{2}\right)
Multiply 1.044 and \frac{1}{1000} to get \frac{261}{250000}.
\frac{261}{250000}p=2478.968175\left(1-186\times 10^{-6}p+1.06\times 10^{-8}p^{2}\right)
Multiply 8.3145 and 298.15 to get 2478.968175.
\frac{261}{250000}p=2478.968175\left(1-186\times \frac{1}{1000000}p+1.06\times 10^{-8}p^{2}\right)
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{261}{250000}p=2478.968175\left(1-\frac{93}{500000}p+1.06\times 10^{-8}p^{2}\right)
Multiply 186 and \frac{1}{1000000} to get \frac{93}{500000}.
\frac{261}{250000}p=2478.968175\left(1-\frac{93}{500000}p+1.06\times \frac{1}{100000000}p^{2}\right)
Calculate 10 to the power of -8 and get \frac{1}{100000000}.
\frac{261}{250000}p=2478.968175\left(1-\frac{93}{500000}p+\frac{53}{5000000000}p^{2}\right)
Multiply 1.06 and \frac{1}{100000000} to get \frac{53}{5000000000}.
\frac{261}{250000}p=2478.968175-\frac{9221761611}{20000000000}p+\frac{5255412531}{200000000000000}p^{2}
Use the distributive property to multiply 2478.968175 by 1-\frac{93}{500000}p+\frac{53}{5000000000}p^{2}.
\frac{261}{250000}p+\frac{9221761611}{20000000000}p=2478.968175+\frac{5255412531}{200000000000000}p^{2}
Add \frac{9221761611}{20000000000}p to both sides.
\frac{9242641611}{20000000000}p=2478.968175+\frac{5255412531}{200000000000000}p^{2}
Combine \frac{261}{250000}p and \frac{9221761611}{20000000000}p to get \frac{9242641611}{20000000000}p.
\frac{9242641611}{20000000000}p-\frac{5255412531}{200000000000000}p^{2}=2478.968175
Subtract \frac{5255412531}{200000000000000}p^{2} from both sides.
-\frac{5255412531}{200000000000000}p^{2}+\frac{9242641611}{20000000000}p=2478.968175
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{5255412531}{200000000000000}p^{2}+\frac{9242641611}{20000000000}p}{-\frac{5255412531}{200000000000000}}=\frac{2478.968175}{-\frac{5255412531}{200000000000000}}
Divide both sides of the equation by -\frac{5255412531}{200000000000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
p^{2}+\frac{\frac{9242641611}{20000000000}}{-\frac{5255412531}{200000000000000}}p=\frac{2478.968175}{-\frac{5255412531}{200000000000000}}
Dividing by -\frac{5255412531}{200000000000000} undoes the multiplication by -\frac{5255412531}{200000000000000}.
p^{2}-\frac{30808805370000}{1751804177}p=\frac{2478.968175}{-\frac{5255412531}{200000000000000}}
Divide \frac{9242641611}{20000000000} by -\frac{5255412531}{200000000000000} by multiplying \frac{9242641611}{20000000000} by the reciprocal of -\frac{5255412531}{200000000000000}.
p^{2}-\frac{30808805370000}{1751804177}p=-\frac{5000000000}{53}
Divide 2478.968175 by -\frac{5255412531}{200000000000000} by multiplying 2478.968175 by the reciprocal of -\frac{5255412531}{200000000000000}.
p^{2}-\frac{30808805370000}{1751804177}p+\left(-\frac{15404402685000}{1751804177}\right)^{2}=-\frac{5000000000}{53}+\left(-\frac{15404402685000}{1751804177}\right)^{2}
Divide -\frac{30808805370000}{1751804177}, the coefficient of the x term, by 2 to get -\frac{15404402685000}{1751804177}. Then add the square of -\frac{15404402685000}{1751804177} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{30808805370000}{1751804177}p+\frac{237295622081635209225000000}{3068817874554647329}=-\frac{5000000000}{53}+\frac{237295622081635209225000000}{3068817874554647329}
Square -\frac{15404402685000}{1751804177} by squaring both the numerator and the denominator of the fraction.
p^{2}-\frac{30808805370000}{1751804177}p+\frac{237295622081635209225000000}{3068817874554647329}=-\frac{52215498159369255775000000}{3068817874554647329}
Add -\frac{5000000000}{53} to \frac{237295622081635209225000000}{3068817874554647329} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{15404402685000}{1751804177}\right)^{2}=-\frac{52215498159369255775000000}{3068817874554647329}
Factor p^{2}-\frac{30808805370000}{1751804177}p+\frac{237295622081635209225000000}{3068817874554647329}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{15404402685000}{1751804177}\right)^{2}}=\sqrt{-\frac{52215498159369255775000000}{3068817874554647329}}
Take the square root of both sides of the equation.
p-\frac{15404402685000}{1751804177}=\frac{5000\sqrt{2088619926374770231}i}{1751804177} p-\frac{15404402685000}{1751804177}=-\frac{5000\sqrt{2088619926374770231}i}{1751804177}
Simplify.
p=\frac{15404402685000+5000\sqrt{2088619926374770231}i}{1751804177} p=\frac{-5000\sqrt{2088619926374770231}i+15404402685000}{1751804177}
Add \frac{15404402685000}{1751804177} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}