Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(10-4x^{2}+x)
Add 1 and 9 to get 10.
-4x^{2}+x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-4\right)\times 10}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\left(-4\right)\times 10}}{2\left(-4\right)}
Square 1.
x=\frac{-1±\sqrt{1+16\times 10}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-1±\sqrt{1+160}}{2\left(-4\right)}
Multiply 16 times 10.
x=\frac{-1±\sqrt{161}}{2\left(-4\right)}
Add 1 to 160.
x=\frac{-1±\sqrt{161}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{161}-1}{-8}
Now solve the equation x=\frac{-1±\sqrt{161}}{-8} when ± is plus. Add -1 to \sqrt{161}.
x=\frac{1-\sqrt{161}}{8}
Divide -1+\sqrt{161} by -8.
x=\frac{-\sqrt{161}-1}{-8}
Now solve the equation x=\frac{-1±\sqrt{161}}{-8} when ± is minus. Subtract \sqrt{161} from -1.
x=\frac{\sqrt{161}+1}{8}
Divide -1-\sqrt{161} by -8.
-4x^{2}+x+10=-4\left(x-\frac{1-\sqrt{161}}{8}\right)\left(x-\frac{\sqrt{161}+1}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{161}}{8} for x_{1} and \frac{1+\sqrt{161}}{8} for x_{2}.
10-4x^{2}+x
Add 1 and 9 to get 10.