Solve for z
z=\frac{3+\sqrt{1091}i}{550}\approx 0.005454545+0.060055071i
z=\frac{-\sqrt{1091}i+3}{550}\approx 0.005454545-0.060055071i
Share
Copied to clipboard
1-3z+275z^{2}-0z^{3}=0
Multiply 0 and 75 to get 0.
1-3z+275z^{2}-0=0
Anything times zero gives zero.
275z^{2}-3z+1=0
Reorder the terms.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 275}}{2\times 275}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 275 for a, -3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-3\right)±\sqrt{9-4\times 275}}{2\times 275}
Square -3.
z=\frac{-\left(-3\right)±\sqrt{9-1100}}{2\times 275}
Multiply -4 times 275.
z=\frac{-\left(-3\right)±\sqrt{-1091}}{2\times 275}
Add 9 to -1100.
z=\frac{-\left(-3\right)±\sqrt{1091}i}{2\times 275}
Take the square root of -1091.
z=\frac{3±\sqrt{1091}i}{2\times 275}
The opposite of -3 is 3.
z=\frac{3±\sqrt{1091}i}{550}
Multiply 2 times 275.
z=\frac{3+\sqrt{1091}i}{550}
Now solve the equation z=\frac{3±\sqrt{1091}i}{550} when ± is plus. Add 3 to i\sqrt{1091}.
z=\frac{-\sqrt{1091}i+3}{550}
Now solve the equation z=\frac{3±\sqrt{1091}i}{550} when ± is minus. Subtract i\sqrt{1091} from 3.
z=\frac{3+\sqrt{1091}i}{550} z=\frac{-\sqrt{1091}i+3}{550}
The equation is now solved.
1-3z+275z^{2}-0z^{3}=0
Multiply 0 and 75 to get 0.
1-3z+275z^{2}-0=0
Anything times zero gives zero.
1-3z+275z^{2}=0+0
Add 0 to both sides.
1-3z+275z^{2}=0
Add 0 and 0 to get 0.
-3z+275z^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
275z^{2}-3z=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{275z^{2}-3z}{275}=-\frac{1}{275}
Divide both sides by 275.
z^{2}-\frac{3}{275}z=-\frac{1}{275}
Dividing by 275 undoes the multiplication by 275.
z^{2}-\frac{3}{275}z+\left(-\frac{3}{550}\right)^{2}=-\frac{1}{275}+\left(-\frac{3}{550}\right)^{2}
Divide -\frac{3}{275}, the coefficient of the x term, by 2 to get -\frac{3}{550}. Then add the square of -\frac{3}{550} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{3}{275}z+\frac{9}{302500}=-\frac{1}{275}+\frac{9}{302500}
Square -\frac{3}{550} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{3}{275}z+\frac{9}{302500}=-\frac{1091}{302500}
Add -\frac{1}{275} to \frac{9}{302500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z-\frac{3}{550}\right)^{2}=-\frac{1091}{302500}
Factor z^{2}-\frac{3}{275}z+\frac{9}{302500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{3}{550}\right)^{2}}=\sqrt{-\frac{1091}{302500}}
Take the square root of both sides of the equation.
z-\frac{3}{550}=\frac{\sqrt{1091}i}{550} z-\frac{3}{550}=-\frac{\sqrt{1091}i}{550}
Simplify.
z=\frac{3+\sqrt{1091}i}{550} z=\frac{-\sqrt{1091}i+3}{550}
Add \frac{3}{550} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}