Solve for x
x=0
Graph
Share
Copied to clipboard
365x+1-365\times 0\times 2\left(365x+1\right)=1
Variable x cannot be equal to -\frac{1}{365} since division by zero is not defined. Multiply both sides of the equation by 365x+1.
365x+1-0\times 2\left(365x+1\right)=1
Multiply 365 and 0 to get 0.
365x+1-0\left(365x+1\right)=1
Multiply 0 and 2 to get 0.
365x+1-0=1
Anything times zero gives zero.
365x+1=1+0
Add 0 to both sides.
365x+1=1
Add 1 and 0 to get 1.
365x=1-1
Subtract 1 from both sides.
365x=0
Subtract 1 from 1 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 365 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}