1- \frac{ 1 }{ 4 } =x( \frac{ 1 }{ 2 } )( \sqrt{ 3) }
Solve for x
x=\frac{\sqrt{3}}{2}\approx 0.866025404
Graph
Share
Copied to clipboard
\frac{4}{4}-\frac{1}{4}=x\times \frac{1}{2}\sqrt{3}
Convert 1 to fraction \frac{4}{4}.
\frac{4-1}{4}=x\times \frac{1}{2}\sqrt{3}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}=x\times \frac{1}{2}\sqrt{3}
Subtract 1 from 4 to get 3.
x\times \frac{1}{2}\sqrt{3}=\frac{3}{4}
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{3}}{2}x=\frac{3}{4}
The equation is in standard form.
\frac{2\times \frac{\sqrt{3}}{2}x}{\sqrt{3}}=\frac{\frac{3}{4}\times 2}{\sqrt{3}}
Divide both sides by \frac{1}{2}\sqrt{3}.
x=\frac{\frac{3}{4}\times 2}{\sqrt{3}}
Dividing by \frac{1}{2}\sqrt{3} undoes the multiplication by \frac{1}{2}\sqrt{3}.
x=\frac{\sqrt{3}}{2}
Divide \frac{3}{4} by \frac{1}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}