Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\phantom{\times}2805156\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 1402578 with 2. Write the result 2805156 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\phantom{\times}2805156\\\phantom{\times}9818046\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 1402578 with 7. Write the result 9818046 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\phantom{\times}2805156\\\phantom{\times}9818046\phantom{9}\\\phantom{\times}12623202\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 1402578 with 9. Write the result 12623202 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\phantom{\times}2805156\\\phantom{\times}9818046\phantom{9}\\\phantom{\times}12623202\phantom{99}\\\phantom{\times}2805156\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1402578 with 2. Write the result 2805156 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\phantom{\times}2805156\\\phantom{\times}9818046\phantom{9}\\\phantom{\times}12623202\phantom{99}\\\phantom{\times}2805156\phantom{999}\\\phantom{\times}0\phantom{9999}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1402578 with 0. Write the result 0 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\phantom{\times}2805156\\\phantom{\times}9818046\phantom{9}\\\phantom{\times}12623202\phantom{99}\\\phantom{\times}2805156\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}4207734\phantom{99999}\\\end{array}
Now multiply the first number with the 6^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1402578 with 3. Write the result 4207734 at the end leaving 5 spaces to the right like this.
\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\phantom{\times}2805156\\\phantom{\times}9818046\phantom{9}\\\phantom{\times}12623202\phantom{99}\\\phantom{\times}2805156\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}4207734\phantom{99999}\\\underline{\phantom{\times}1402578\phantom{999999}}\\\end{array}
Now multiply the first number with the 7^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 1402578 with 1. Write the result 1402578 at the end leaving 6 spaces to the right like this.
\begin{array}{c}\phantom{\times}1402578\\\underline{\times\phantom{}1302972}\\\phantom{\times}2805156\\\phantom{\times}9818046\phantom{9}\\\phantom{\times}12623202\phantom{99}\\\phantom{\times}2805156\phantom{999}\\\phantom{\times}0\phantom{9999}\\\phantom{\times}4207734\phantom{99999}\\\underline{\phantom{\times}1402578\phantom{999999}}\\\phantom{\times}-2136206280\end{array}
Now add the intermediate results to get final answer.